PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): o635.
Published online 2008 February 27. doi:  10.1107/S1600536808005321
PMCID: PMC2960758

4-Chloro-2-[(E)-({4-[N-(3,4-dimethyl­isoxazol-5-yl)sulfamo­yl]phen­yl}iminio)meth­yl]phenolate

Abstract

The title compound, C18H16ClN3O4S, is a Schiff base ligand in which the H atom of the hydr­oxy group has moved to the N atom of the imine group, resulting in a zwitterion. The structure is stabilized by an intra­molecular (N—H(...)O) and five inter­molecular (C—H(...)O, C—H(...)N and N—H(...)O) hydrogen bonds. The mol­ecules are linked to each other by hydrogen bonds and form a three-dimensional polymeric network. In addition, the aromatic rings are also involved in π–π inter­actions [centroid–centroid distance between aromatic rings = 3.7525 (11) Å].

Related literature

For related literature, see: Chatterjee et al. (1982 [triangle]); Chohan et al. (2008 [triangle]); Hämäläinen et al. (1986 [triangle]); Nishimori et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o635-scheme1.jpg

Experimental

Crystal data

  • C18H16ClN3O4S
  • M r = 405.85
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o635-efi1.jpg
  • a = 15.1871 (6) Å
  • b = 7.2555 (3) Å
  • c = 16.6267 (7) Å
  • β = 94.081 (2)°
  • V = 1827.45 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.35 mm−1
  • T = 296 (2) K
  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.886, T max = 0.935
  • 18429 measured reflections
  • 4669 independent reflections
  • 3443 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.127
  • S = 1.04
  • 3443 reflections
  • 250 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808005321/pv2068sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005321/pv2068Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer.

supplementary crystallographic information

Comment

Sulfonamides have been found to possess a wide range of medicinal properties such as antibacterial, antitumor, diuretic, anti-carbonic anhydrase, hypoglycaemic, anti-thyroid and protease inhibitor (Nishimori et al., 2005). In view of the versatile chemistry of various derivatives of sulfonamides, a continuous effort of synthesizing Schiff base ligands of substituted halogen salicylaldehyde and various sulfonamides (Chohan et al., 2008) is in progress. In the same context, we herein report the structure of the title compound, (I), derived from the reaction of sulfisoxazole [N-(3,4-dimethyl-5-isoxazol)sulfanilamide] and 5-chlorosalicylaldehyde. The crystal structures of sulfisoxazole (Chatterjee et al., 1982) and a bromo analog of (I) (Hämäläinen et al., 1986) have already been published; the later is isomorphous with (I).

In the solid state the H-atom bonded to hydroxy group in (I) has shifted to N-atom of the Schiff base moiety, resulting in the formation of a zwitterion (Fig. 1). The bond distance C2—O1 [1.302 (2) Å] in (I) compares well with 1.295 (10) Å reported for the corresponding distance in the bromo-analog. The bond lengths in the aromatic rings in (I) are similar to the corresonding bond lengths reported in its bromo-isomorph. The range of bond angles around S-atom [104.86 (10)°-121.02 (11)°] in (I) is also the same as reported [104.5 (4)°-121.2 (4)°] in the bromo-analog (Hämäläinen et al., 1986). The structure is stabilized by an intramolecular and five intermolecular H-bondings, the details of H-bonds are given in Table 1. The molecules linked to each other by H-bonds form a three-dimensional polymeric network (Fig. 2). In addition, π-π interactions between aromatic rings C8—C13 (ring A) and C1—C6 (ring B) are also observed with distance between the centers of gravity for the two rings CgA···CgBiv (iv = x, y - 1, z) being Å. There also exists a π interaction between five-membered heterocyclic ring (ring C) and Cl1 with Cl1···CgCv [v = x - 1/2, -y - 1/2, z - 1/2] distance of 3.5371 (11) Å. The dihedral angles between the rings A/B, A/C, B/C have values of 5.84 (9), 43.37 (11), and 43.29 (11)°, respectively.

Experimental

An ethanol solution (15 ml) of sulfisoxazole (0.5346 g, 2 mmol) was added to a solution of 5-chlorosalicylaldehyde (0.3131 g, 2 mmol) in ethanol (10 ml). The reaction mixture was refluxed for 3 h. The solution was cooled to room temperature, filtered and volume reduced to about one-third using rotary evaporator. It was then allowed to stand for 13 days, after which orange-red crystals were obtained (m.p. 509 K).

Refinement

The coordinates of H-atoms attached to N-atoms were refined. The rest of the H-atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H-atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1.
ORTEP-3 (Farrugia, 1997) drawing of (I) with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. The intramolecular H-bonding is shown by dashed lines.
Fig. 2.
The unit cell packing of (I) (Spek, 2003) showing the interamolecular and intermolecular H-bonds leading to three-dimensional network.

Crystal data

C18H16ClN3O4SF000 = 840
Mr = 405.85Dx = 1.475 Mg m3
Monoclinic, P21/nMelting point: 509 K
Hall symbol: -P 2ynMo Kα radiation λ = 0.71073 Å
a = 15.1871 (6) ÅCell parameters from 2465 reflections
b = 7.2555 (3) Åθ = 2.2–28.7º
c = 16.6267 (7) ŵ = 0.35 mm1
β = 94.081 (2)ºT = 296 (2) K
V = 1827.45 (13) Å3Prismatic, red
Z = 40.30 × 0.25 × 0.20 mm

Data collection

Bruker Kappa APEXII CCD diffractometer4669 independent reflections
Radiation source: fine-focus sealed tube3443 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.028
Detector resolution: 7.40 pixels mm-1θmax = 28.6º
T = 296(2) Kθmin = 1.8º
ω scansh = −20→20
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −9→9
Tmin = 0.886, Tmax = 0.935l = −22→22
18429 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127  w = 1/[σ2(Fo2) + (0.0619P)2 + 0.5575P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3443 reflectionsΔρmax = 0.38 e Å3
250 parametersΔρmin = −0.22 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.87797 (4)−0.43370 (8)0.58505 (4)0.06440 (19)
S10.60762 (4)0.99136 (7)0.32843 (3)0.04563 (15)
O10.62180 (10)0.1417 (2)0.64974 (8)0.0504 (4)
O20.68281 (11)1.0347 (2)0.28554 (11)0.0678 (5)
O30.56667 (13)1.1279 (2)0.37529 (10)0.0676 (5)
O40.59283 (10)0.8115 (2)0.14720 (8)0.0529 (4)
N10.67536 (10)0.3239 (2)0.52967 (9)0.0368 (3)
H10.6445 (13)0.312 (3)0.5715 (13)0.044*
N20.52879 (11)0.9215 (2)0.26153 (10)0.0400 (4)
H20.4845 (15)0.908 (3)0.2832 (13)0.048*
N30.59687 (15)0.6461 (3)0.10209 (12)0.0666 (6)
C10.73875 (12)0.0376 (3)0.57297 (11)0.0378 (4)
C20.68045 (13)0.0167 (3)0.63625 (11)0.0395 (4)
C30.68941 (15)−0.1451 (3)0.68403 (12)0.0471 (5)
H30.6540−0.16080.72690.057*
C40.74946 (15)−0.2786 (3)0.66788 (12)0.0496 (5)
H40.7533−0.38500.69910.059*
C50.80496 (13)−0.2571 (3)0.60509 (12)0.0449 (4)
C60.80079 (12)−0.1021 (3)0.55890 (12)0.0438 (4)
H60.8389−0.08790.51790.053*
C70.73313 (12)0.1937 (3)0.52144 (11)0.0392 (4)
H70.77170.20330.48070.047*
C80.66304 (11)0.4819 (2)0.48013 (10)0.0343 (4)
C90.60243 (11)0.6121 (3)0.50340 (10)0.0360 (4)
H90.57240.59280.54950.043*
C100.58692 (12)0.7701 (3)0.45801 (11)0.0388 (4)
H100.54630.85720.47320.047*
C110.63252 (12)0.7973 (3)0.38967 (10)0.0366 (4)
C120.69331 (13)0.6678 (3)0.36602 (11)0.0425 (4)
H120.72390.68830.32030.051*
C130.70799 (13)0.5089 (3)0.41075 (11)0.0423 (4)
H130.74750.42060.39470.051*
C140.54518 (11)0.7736 (3)0.21080 (10)0.0373 (4)
C150.51814 (13)0.5968 (3)0.20979 (11)0.0417 (4)
C160.55223 (16)0.5232 (3)0.13954 (13)0.0537 (5)
C170.46521 (19)0.4975 (3)0.26793 (16)0.0662 (7)
H17A0.41520.44050.23940.099*
H17B0.44530.58320.30670.099*
H17C0.50100.40450.29520.099*
C180.5413 (2)0.3294 (4)0.10901 (18)0.0851 (9)
H18A0.52630.33130.05190.128*
H18B0.49510.26970.13570.128*
H18C0.59560.26310.11980.128*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0529 (3)0.0449 (3)0.0932 (5)0.0139 (2)−0.0106 (3)0.0027 (3)
S10.0563 (3)0.0317 (2)0.0478 (3)−0.0073 (2)−0.0044 (2)0.0078 (2)
O10.0551 (8)0.0479 (8)0.0507 (8)0.0055 (7)0.0206 (7)0.0053 (6)
O20.0592 (9)0.0676 (11)0.0756 (11)−0.0261 (8)−0.0034 (8)0.0294 (9)
O30.1035 (13)0.0312 (8)0.0657 (10)0.0075 (8)−0.0100 (9)−0.0040 (7)
O40.0582 (9)0.0546 (9)0.0484 (8)−0.0151 (7)0.0214 (7)0.0025 (7)
N10.0385 (8)0.0379 (8)0.0343 (7)0.0015 (6)0.0054 (6)0.0063 (6)
N20.0404 (8)0.0388 (9)0.0407 (8)−0.0005 (7)0.0033 (7)0.0074 (7)
N30.0833 (14)0.0628 (13)0.0581 (11)−0.0124 (11)0.0358 (10)−0.0091 (10)
C10.0368 (9)0.0371 (10)0.0389 (9)0.0000 (7)−0.0002 (7)0.0046 (7)
C20.0434 (10)0.0396 (10)0.0352 (9)−0.0060 (8)0.0006 (7)−0.0005 (7)
C30.0613 (12)0.0411 (11)0.0393 (10)−0.0094 (9)0.0056 (9)0.0045 (8)
C40.0646 (13)0.0362 (10)0.0456 (11)−0.0067 (9)−0.0124 (9)0.0088 (8)
C50.0409 (10)0.0388 (10)0.0530 (11)0.0032 (8)−0.0103 (8)0.0002 (9)
C60.0382 (9)0.0440 (11)0.0495 (11)0.0044 (8)0.0050 (8)0.0056 (9)
C70.0380 (9)0.0399 (10)0.0402 (9)0.0019 (8)0.0071 (7)0.0053 (8)
C80.0344 (8)0.0353 (9)0.0329 (8)−0.0015 (7)0.0004 (7)0.0024 (7)
C90.0369 (9)0.0403 (10)0.0311 (8)0.0004 (7)0.0041 (7)0.0002 (7)
C100.0407 (9)0.0360 (10)0.0396 (9)0.0043 (8)0.0025 (7)−0.0031 (7)
C110.0408 (9)0.0318 (9)0.0366 (9)−0.0027 (7)−0.0019 (7)0.0037 (7)
C120.0440 (10)0.0475 (11)0.0372 (9)0.0026 (8)0.0100 (8)0.0072 (8)
C130.0434 (10)0.0439 (11)0.0407 (9)0.0104 (8)0.0104 (8)0.0051 (8)
C140.0345 (8)0.0433 (10)0.0344 (8)−0.0016 (7)0.0049 (7)0.0088 (7)
C150.0440 (10)0.0384 (10)0.0438 (10)0.0004 (8)0.0102 (8)0.0071 (8)
C160.0598 (13)0.0524 (13)0.0509 (12)−0.0057 (10)0.0174 (10)−0.0027 (10)
C170.0873 (18)0.0405 (12)0.0762 (16)−0.0041 (12)0.0425 (14)0.0115 (11)
C180.118 (2)0.0623 (17)0.0799 (18)−0.0154 (17)0.0424 (18)−0.0195 (14)

Geometric parameters (Å, °)

Cl1—C51.742 (2)C6—H60.9300
S1—O21.4238 (17)C7—H70.9300
S1—O31.4298 (17)C8—C91.393 (2)
S1—N21.6545 (17)C8—C131.395 (2)
S1—C111.7630 (18)C9—C101.383 (3)
O1—C21.302 (2)C9—H90.9300
O4—C141.351 (2)C10—C111.386 (2)
O4—N31.419 (2)C10—H100.9300
N1—C71.303 (2)C11—C121.393 (3)
N1—C81.416 (2)C12—C131.382 (3)
N1—H10.87 (2)C12—H120.9300
N2—C141.399 (2)C13—H130.9300
N2—H20.79 (2)C14—C151.346 (3)
N3—C161.305 (3)C15—C161.415 (3)
C1—C61.415 (3)C15—C171.487 (3)
C1—C71.419 (3)C16—C181.501 (3)
C1—C21.431 (2)C17—H17A0.9600
C2—C31.419 (3)C17—H17B0.9600
C3—C41.370 (3)C17—H17C0.9600
C3—H30.9300C18—H18A0.9600
C4—C51.396 (3)C18—H18B0.9600
C4—H40.9300C18—H18C0.9600
C5—C61.361 (3)
O2—S1—O3121.02 (11)C13—C8—N1122.83 (16)
O2—S1—N2107.38 (10)C10—C9—C8120.05 (16)
O3—S1—N2104.86 (10)C10—C9—H9120.0
O2—S1—C11108.61 (10)C8—C9—H9120.0
O3—S1—C11108.80 (9)C9—C10—C11119.31 (17)
N2—S1—C11105.00 (8)C9—C10—H10120.3
C14—O4—N3106.69 (15)C11—C10—H10120.3
C7—N1—C8126.00 (15)C10—C11—C12121.02 (17)
C7—N1—H1114.5 (14)C10—C11—S1119.21 (14)
C8—N1—H1119.4 (14)C12—C11—S1119.64 (13)
C14—N2—S1119.29 (13)C13—C12—C11119.70 (16)
C14—N2—H2111.7 (17)C13—C12—H12120.1
S1—N2—H2109.3 (16)C11—C12—H12120.1
C16—N3—O4106.39 (16)C12—C13—C8119.50 (17)
C6—C1—C7118.96 (16)C12—C13—H13120.3
C6—C1—C2119.99 (17)C8—C13—H13120.3
C7—C1—C2121.00 (17)C15—C14—O4111.35 (17)
O1—C2—C3121.31 (17)C15—C14—N2132.18 (16)
O1—C2—C1121.30 (17)O4—C14—N2116.35 (16)
C3—C2—C1117.38 (18)C14—C15—C16103.91 (17)
C4—C3—C2120.93 (18)C14—C15—C17129.22 (19)
C4—C3—H3119.5C16—C15—C17126.9 (2)
C2—C3—H3119.5N3—C16—C15111.7 (2)
C3—C4—C5120.87 (18)N3—C16—C18121.8 (2)
C3—C4—H4119.6C15—C16—C18126.5 (2)
C5—C4—H4119.6C15—C17—H17A109.5
C6—C5—C4120.53 (19)C15—C17—H17B109.5
C6—C5—Cl1120.31 (16)H17A—C17—H17B109.5
C4—C5—Cl1119.15 (16)C15—C17—H17C109.5
C5—C6—C1120.25 (18)H17A—C17—H17C109.5
C5—C6—H6119.9H17B—C17—H17C109.5
C1—C6—H6119.9C16—C18—H18A109.5
N1—C7—C1121.81 (16)C16—C18—H18B109.5
N1—C7—H7119.1H18A—C18—H18B109.5
C1—C7—H7119.1C16—C18—H18C109.5
C9—C8—C13120.42 (16)H18A—C18—H18C109.5
C9—C8—N1116.75 (15)H18B—C18—H18C109.5
O2—S1—N2—C1456.27 (16)C9—C10—C11—S1176.02 (14)
O3—S1—N2—C14−173.81 (14)O2—S1—C11—C10155.29 (15)
C11—S1—N2—C14−59.20 (15)O3—S1—C11—C1021.74 (19)
C14—O4—N3—C160.6 (2)N2—S1—C11—C10−90.09 (16)
C6—C1—C2—O1−178.92 (18)O2—S1—C11—C12−28.85 (19)
C7—C1—C2—O1−1.5 (3)O3—S1—C11—C12−162.40 (16)
C6—C1—C2—C31.4 (3)N2—S1—C11—C1285.77 (17)
C7—C1—C2—C3178.83 (18)C10—C11—C12—C130.6 (3)
O1—C2—C3—C4177.98 (19)S1—C11—C12—C13−175.17 (16)
C1—C2—C3—C4−2.4 (3)C11—C12—C13—C8−1.4 (3)
C2—C3—C4—C51.5 (3)C9—C8—C13—C121.3 (3)
C3—C4—C5—C60.4 (3)N1—C8—C13—C12−179.16 (18)
C3—C4—C5—Cl1−178.14 (16)N3—O4—C14—C15−0.2 (2)
C4—C5—C6—C1−1.3 (3)N3—O4—C14—N2−176.68 (17)
Cl1—C5—C6—C1177.20 (15)S1—N2—C14—C15105.9 (2)
C7—C1—C6—C5−177.06 (18)S1—N2—C14—O4−78.51 (19)
C2—C1—C6—C50.4 (3)O4—C14—C15—C16−0.2 (2)
C8—N1—C7—C1−178.19 (17)N2—C14—C15—C16175.5 (2)
C6—C1—C7—N1177.69 (19)O4—C14—C15—C17179.5 (2)
C2—C1—C7—N10.3 (3)N2—C14—C15—C17−4.7 (4)
C7—N1—C8—C9−174.85 (18)O4—N3—C16—C15−0.7 (3)
C7—N1—C8—C135.6 (3)O4—N3—C16—C18179.6 (3)
C13—C8—C9—C10−0.5 (3)C14—C15—C16—N30.6 (3)
N1—C8—C9—C10179.96 (16)C17—C15—C16—N3−179.2 (2)
C8—C9—C10—C11−0.3 (3)C14—C15—C16—C18−179.8 (3)
C9—C10—C11—C120.2 (3)C17—C15—C16—C180.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O10.87 (2)1.85 (2)2.574 (2)140 (2)
C7—H7···N3i0.932.543.429 (3)161
C12—H12···O2i0.932.593.391 (3)145
C17—H17C···O3ii0.962.573.516 (3)168
C17—H17B···O1iii0.962.383.276 (3)156
N2—H2···O1iii0.79 (2)2.06 (2)2.846 (2)173 (2)

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x, y−1, z; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2068).

References

  • Bruker (2005). SADABS Bruker AXS Inc. Madison, Wisconsion, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsion, USA.
  • Chatterjee, C., Dattagupta, J. K. & Saha, N. N. (1982). Acta Cryst. B38, 1845–1847.
  • Chohan, Z. H., Shad, H. A., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64 Submitted.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hämäläinen, R., Lehtinen, M. & Turpeinen, U. (1986). Arch. Pharm.319, 415–420.
  • Nishimori, I., Vullo, D., Innocenti, A., Scozzafava, A., Mastrolorenz, A. & Supuran, C. T. (2005). Bioorg. Med. Chem. Lett.15, 3828–3833. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography