PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): m451–m452.
Published online 2008 February 6. doi:  10.1107/S1600536808002961
PMCID: PMC2960753

Poly[tetra­aqua­bis(μ2-2,4,6-trinitro­phenolato)barium(II)]

Abstract

The asymmetric unit of the title compound, [Ba(C6H2N3O7)2(H2O)4]n, consists of a barium ion coordinated by two nitrophenolate ligands and four water mol­ecules. Barium is deca­coordinated by O atoms. These units are linked together through bridging nitro groups to form a one-dimensional polymeric chain. The three-dimensional packing is facilitated through hydrogen-bonding inter­actions mediated through water mol­ecules. The coordination distances around Ba vary from 2.728 (4) to 3.138 (5) Å. The crystal sample, on exposure to air at room temperature for many days, slowly loses the water and peels out as filaments.

Related literature

For related literature, see: Brahadeeswaran et al. (1998 [triangle], 1999 [triangle]); Jonie Varjula et al. (2007 [triangle]); Milton Boaz et al. (2005 [triangle]); Vesta et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m451-scheme1.jpg

Experimental

Crystal data

  • [Ba(C6H2N3O7)2(H2O)4]
  • M r = 665.62
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m451-efi1.jpg
  • a = 11.6765 (4) Å
  • b = 6.6878 (2) Å
  • c = 27.0324 (9) Å
  • β = 95.608 (2)°
  • V = 2100.86 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.00 mm−1
  • T = 293 (2) K
  • 0.20 × 0.20 × 0.15 mm

Data collection

  • Bruker Kappa APEX2 diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1999 [triangle]) T min = 0.652, T max = 0.723
  • 20976 measured reflections
  • 3674 independent reflections
  • 3552 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.084
  • S = 1.42
  • 3674 reflections
  • 360 parameters
  • 234 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.58 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2004 [triangle]); data reduction: SAINT and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808002961/sg2220sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808002961/sg2220Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Sophisticated Analytical Instruments Facility, Indian Institute of Technology Madras, Chennai, for the X-ray data collection.

supplementary crystallographic information

Comment

Nitrophenol family of crystals are found to have high laser damage threshold, wide transparency windows, and high NLO co-efficients ((Brahadeeswaran et al., 1998, 1999), (Milton Boaz et al., 2005), (Vesta et al., 2007), (Jonie Varjula et al., 2007)). Nitrophenol groups are found to be good proton acceptors from the metallic hydroxide complexes. The title compound was synthesized as part of our ongoing research for synthesizing and characterizing new optically active materials. In the present work, the crystal structure of the compound (BaC12H4N6O14.4H2O) is reported for the first time.The reported compound is not optically active.

The title compound crystallizes in monoclinic system with space group P21/c. ORTEP representation of the molecule with 50% anisotropic ellipsoids are shown in figure1.The asymmetric unit consists of two nitrophenolate moieties coordinated to barium through phenolate O atoms O7 and O14 and one nitro oxygen each from nitrophenolate moieties (O1 and O8), on one side. Four water molecules of the asymmetric unit coordinates to other side. The asymmetric unit and its inversion are linked to each other through nitro oxygen O5(symm: 2 - x, 2 - y, -z) coordinating to metal. The centrosymmetric pair and its a-translations are joined to each other through nitro O atoms O11 (symm: x - 1, y, z) to form an one dimensional infinite polymeric chain parallel to a axis (Fig.2).Thus, Barium is coordinated with 10 O atoms. The coordination distances around Ba vary from 2.728 Å to 3.138 Å. The one dimensional chains are further linked to each other (along b and c directions) through water mediated O—H···O hydrogen bonds (Fig.3). The crystal sample, on exposure to air at room temperature for many days, slowly looses the water and peels out as filaments.

Experimental

Picric acid (99%, 5.73 g ms) was dissolved in deionized water (100 ml) and then Ba(OH)2 (97%, 3.94 g ms) was added slowly with stirring to obtain saturated solution. The saturated solution kept at 305 K yielded fine yellow crystals in three days through spontaneous nucleation. The sample was purified further through recrystallization.

Refinement

The aromatic H atoms were located in Fourier difference map and geometrically constrained at idealized positions (C—H = 0.93 Å) and were given riding model refinement with Uiso equal to 1.2 times Ueq of the parent carbon. All the water H atoms were located in difference Fourier map and refined isotropically with following restrints: O—H = 0.850 (1)Å and H···H = 1.380 (1) Å. These restraints were put to avoid bad geometry after refinement. The isotropic thermal parameters of H atoms H16A, H16B, H17A, H17B, H18A and H18B were constrained as 0.08 Å-2 during refinement.

Figures

Fig. 1.
The ORTEP representation of the molecule with 50% probability anisotropic ellipsoid.
Fig. 2.
One dimensional polymeric chain of the title compound formed by a-translation of the asymmetric unit and its inversion.
Fig. 3.
Packing of molecules in the unit cell viewed down b axis. Hydrogen bonds are shown with dotted lines.

Crystal data

[Ba(C6H2N3O7)2(H2O)4]F000 = 1304
Mr = 665.62Dx = 2.104 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 6588 reflections
a = 11.6765 (4) Åθ = 2.4–25.0º
b = 6.6878 (2) ŵ = 2.00 mm1
c = 27.0324 (9) ÅT = 293 (2) K
β = 95.608 (2)ºPlate, yellow
V = 2100.86 (12) Å30.20 × 0.20 × 0.15 mm
Z = 4

Data collection

Bruker Kappa APEX2 diffractometer3674 independent reflections
Radiation source: fine-focus sealed tube3552 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.020
T = 293(2) Kθmax = 25.0º
ω and [var phi] scansθmin = 2.4º
Absorption correction: multi-scan(SADABS; Bruker, 1999)h = −13→13
Tmin = 0.652, Tmax = 0.723k = −7→7
20976 measured reflectionsl = −32→32

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084  w = 1/[σ2(Fo2) + 9.4089P] where P = (Fo2 + 2Fc2)/3
S = 1.42(Δ/σ)max = 0.002
3674 reflectionsΔρmax = 0.58 e Å3
360 parametersΔρmin = −0.53 e Å3
234 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.2555 (4)1.1054 (8)0.13511 (18)0.0242 (11)
C21.1690 (4)1.1014 (7)0.09309 (19)0.0238 (10)
C31.2195 (4)1.1225 (7)0.04666 (18)0.0255 (11)
C41.3344 (4)1.1314 (8)0.04212 (19)0.0280 (11)
H41.36171.13690.01100.034*
C51.4101 (4)1.1319 (8)0.0851 (2)0.0271 (11)
C61.3720 (4)1.1214 (7)0.13149 (19)0.0258 (11)
H61.42381.12510.15990.031*
C71.3226 (4)0.6198 (7)0.09934 (18)0.0246 (11)
C81.4352 (4)0.6309 (8)0.0885 (2)0.0280 (12)
H81.45270.63630.05570.034*
C91.5217 (4)0.6338 (8)0.12707 (19)0.0268 (11)
C101.4971 (4)0.6212 (8)0.1761 (2)0.0301 (12)
H101.55610.61870.20180.036*
C111.3855 (5)0.6125 (8)0.18597 (19)0.0291 (12)
C121.2861 (4)0.6108 (8)0.1489 (2)0.0270 (11)
N11.2203 (4)1.0954 (7)0.18515 (16)0.0324 (10)
N21.5322 (4)1.1492 (8)0.0809 (2)0.0409 (12)
N31.1438 (4)1.1353 (7)0.00065 (17)0.0339 (11)
N41.2374 (4)0.6143 (7)0.05641 (16)0.0284 (10)
N51.6402 (4)0.6485 (8)0.11597 (19)0.0384 (12)
N61.3656 (4)0.6031 (9)0.23850 (18)0.0426 (12)
O11.1282 (4)1.0179 (7)0.19220 (15)0.0450 (11)
O21.2845 (4)1.1681 (8)0.21915 (15)0.0524 (12)
O31.5656 (4)1.1695 (9)0.03987 (19)0.0671 (15)
O41.5960 (4)1.1459 (10)0.1193 (2)0.0709 (16)
O51.1760 (4)1.0643 (9)−0.03692 (16)0.0604 (14)
O61.0527 (4)1.2218 (8)0.00097 (17)0.0616 (14)
O71.0641 (3)1.0833 (6)0.09589 (14)0.0359 (9)
O81.1364 (3)0.6458 (8)0.06148 (16)0.0566 (13)
O91.2699 (4)0.5776 (7)0.01567 (14)0.0467 (11)
O101.6600 (4)0.6531 (9)0.07262 (19)0.0672 (15)
O111.7160 (3)0.6578 (8)0.15020 (18)0.0573 (13)
O121.2822 (5)0.6819 (10)0.25207 (18)0.0770 (17)
O131.4367 (4)0.5156 (8)0.26667 (17)0.0616 (14)
O141.1854 (3)0.5971 (7)0.15895 (15)0.0419 (10)
O150.9006 (4)0.4119 (7)0.07251 (15)0.0403 (10)
O160.8349 (4)1.1003 (8)0.13919 (18)0.0522 (12)
O170.9062 (4)0.8444 (9)0.22439 (17)0.0601 (13)
O180.9301 (5)0.4269 (8)0.19520 (18)0.0639 (14)
Ba0.96482 (2)0.74829 (6)0.130390 (11)0.02924 (11)
H15A0.955 (3)0.334 (7)0.067 (2)0.07 (3)*
H15B0.852 (4)0.415 (11)0.0470 (14)0.08 (3)*
H16A0.7657 (17)1.072 (11)0.144 (3)0.080*
H16B0.835 (5)1.182 (10)0.115 (2)0.080*
H17A0.852 (3)0.930 (6)0.222 (2)0.080*
H17B0.948 (5)0.866 (11)0.2514 (15)0.080*
H18A0.925 (6)0.318 (5)0.179 (2)0.080*
H18B0.901 (6)0.410 (10)0.2224 (15)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.030 (3)0.020 (2)0.023 (2)0.002 (2)0.003 (2)0.002 (2)
C20.019 (2)0.017 (2)0.035 (3)−0.002 (2)0.003 (2)0.001 (2)
C30.031 (3)0.017 (3)0.028 (3)−0.004 (2)0.000 (2)0.001 (2)
C40.033 (3)0.023 (3)0.030 (3)−0.004 (2)0.010 (2)−0.003 (2)
C50.023 (3)0.021 (3)0.038 (3)0.002 (2)0.004 (2)−0.003 (2)
C60.024 (3)0.019 (3)0.033 (3)0.003 (2)−0.003 (2)−0.002 (2)
C70.026 (3)0.018 (2)0.029 (3)0.000 (2)−0.004 (2)0.000 (2)
C80.027 (3)0.025 (3)0.032 (3)−0.001 (2)0.006 (2)0.002 (2)
C90.019 (2)0.024 (3)0.038 (3)0.000 (2)0.003 (2)0.002 (2)
C100.026 (3)0.027 (3)0.036 (3)−0.002 (2)−0.007 (2)0.003 (2)
C110.030 (3)0.030 (3)0.027 (3)0.000 (2)0.001 (2)−0.001 (2)
C120.022 (3)0.021 (3)0.037 (3)0.000 (2)0.001 (2)0.001 (2)
N10.031 (2)0.036 (3)0.030 (2)−0.001 (2)0.0047 (19)−0.002 (2)
N20.028 (2)0.042 (3)0.054 (3)0.001 (2)0.008 (2)−0.004 (2)
N30.033 (3)0.036 (3)0.032 (2)−0.010 (2)−0.0009 (19)0.005 (2)
N40.027 (2)0.023 (2)0.034 (2)0.0018 (19)−0.0030 (18)−0.0015 (19)
N50.023 (2)0.041 (3)0.051 (3)−0.002 (2)0.005 (2)0.003 (2)
N60.035 (3)0.054 (3)0.039 (3)−0.001 (3)0.004 (2)0.000 (3)
O10.040 (2)0.058 (3)0.039 (2)−0.016 (2)0.0174 (18)−0.002 (2)
O20.050 (3)0.075 (3)0.032 (2)−0.011 (2)0.0019 (19)−0.015 (2)
O30.042 (3)0.095 (4)0.069 (3)−0.010 (3)0.029 (2)−0.006 (3)
O40.023 (2)0.115 (4)0.073 (3)0.002 (3)−0.004 (2)0.008 (3)
O50.046 (3)0.102 (4)0.033 (2)−0.012 (3)0.0025 (19)−0.013 (3)
O60.058 (3)0.064 (3)0.058 (3)0.024 (3)−0.019 (2)0.002 (3)
O70.0214 (19)0.039 (2)0.047 (2)−0.0024 (17)0.0017 (16)0.0081 (19)
O80.025 (2)0.091 (4)0.051 (3)0.015 (2)−0.0070 (18)−0.014 (3)
O90.042 (2)0.070 (3)0.028 (2)−0.006 (2)0.0009 (17)0.003 (2)
O100.040 (3)0.106 (4)0.059 (3)0.001 (3)0.019 (2)0.013 (3)
O110.022 (2)0.081 (3)0.068 (3)−0.007 (2)−0.003 (2)−0.003 (3)
O120.070 (3)0.117 (5)0.047 (3)0.026 (3)0.019 (2)−0.006 (3)
O130.065 (3)0.077 (4)0.040 (2)−0.001 (3)−0.008 (2)0.015 (2)
O140.024 (2)0.055 (3)0.047 (2)0.0024 (19)0.0071 (17)0.003 (2)
O150.040 (2)0.039 (2)0.040 (2)0.004 (2)−0.0036 (19)−0.0070 (19)
O160.033 (2)0.054 (3)0.069 (3)0.006 (2)0.004 (2)−0.005 (2)
O170.060 (3)0.084 (4)0.038 (2)−0.006 (3)0.008 (2)−0.001 (2)
O180.082 (4)0.059 (3)0.048 (3)−0.010 (3)−0.007 (3)0.011 (2)
Ba0.02237 (16)0.03288 (18)0.03255 (17)−0.00217 (15)0.00312 (11)0.00155 (16)

Geometric parameters (Å, °)

C1—C61.378 (7)N3—O61.211 (6)
C1—C21.444 (7)N3—O51.214 (6)
C1—N11.453 (6)N4—O81.218 (6)
C2—O71.241 (6)N4—O91.224 (6)
C2—C31.445 (7)N5—O101.216 (6)
C3—C41.360 (7)N5—O111.218 (6)
C3—N31.457 (7)N6—O121.196 (7)
C4—C51.388 (7)N6—O131.220 (7)
C4—H40.9300O1—Ba3.010 (4)
C5—C61.374 (7)O5—Bai3.138 (5)
C5—N21.446 (7)O7—Ba2.728 (4)
C6—H60.9300O8—Ba2.947 (4)
C7—C81.377 (7)O11—Baii3.065 (4)
C7—C121.446 (7)O14—Ba2.805 (4)
C7—N41.453 (6)O15—Ba2.801 (4)
C8—C91.379 (7)O15—H15A0.85 (4)
C8—H80.9300O15—H15B0.85 (4)
C9—C101.385 (7)O16—Ba2.823 (5)
C9—N51.448 (6)O16—H16A0.85 (3)
C10—C111.356 (7)O16—H16B0.85 (6)
C10—H100.9300O17—Ba2.771 (4)
C11—C121.458 (7)O17—H17A0.85 (4)
C11—N61.463 (7)O17—H17B0.85 (5)
C12—O141.236 (6)O18—Ba2.827 (5)
N1—O11.225 (6)O18—H18A0.85 (4)
N1—O21.228 (6)O18—H18B0.85 (5)
N2—O31.218 (6)Ba—O11iii3.065 (4)
N2—O41.218 (7)Ba—O5i3.138 (5)
C6—C1—C2124.4 (4)C12—O14—Ba141.3 (4)
C6—C1—N1116.1 (4)Ba—O15—H15A116 (3)
C2—C1—N1119.5 (4)Ba—O15—H15B124 (5)
O7—C2—C1124.9 (5)H15A—O15—H15B109 (5)
O7—C2—C3123.5 (5)Ba—O16—H16A111 (5)
C1—C2—C3111.6 (4)Ba—O16—H16B116 (5)
C4—C3—C2124.9 (5)H16A—O16—H16B109 (6)
C4—C3—N3116.3 (5)Ba—O17—H17A109 (5)
C2—C3—N3118.8 (4)Ba—O17—H17B131 (5)
C3—C4—C5118.5 (5)H17A—O17—H17B108 (6)
C3—C4—H4120.7Ba—O18—H18A110 (4)
C5—C4—H4120.7Ba—O18—H18B137 (5)
C6—C5—C4121.8 (5)H18A—O18—H18B109 (6)
C6—C5—N2119.1 (5)O7—Ba—O17105.91 (15)
C4—C5—N2119.1 (5)O7—Ba—O15124.63 (12)
C5—C6—C1118.6 (5)O17—Ba—O15128.47 (15)
C5—C6—H6120.7O7—Ba—O1488.90 (12)
C1—C6—H6120.7O17—Ba—O1497.68 (14)
C8—C7—C12125.0 (5)O15—Ba—O1493.02 (13)
C8—C7—N4115.1 (4)O7—Ba—O1666.02 (13)
C12—C7—N4119.9 (4)O17—Ba—O1663.03 (16)
C7—C8—C9118.9 (5)O15—Ba—O16126.89 (13)
C7—C8—H8120.5O14—Ba—O16139.82 (13)
C9—C8—H8120.5O7—Ba—O18158.07 (13)
C8—C9—C10121.1 (5)O17—Ba—O1862.93 (17)
C8—C9—N5119.2 (5)O15—Ba—O1871.85 (14)
C10—C9—N5119.6 (5)O14—Ba—O1874.86 (15)
C11—C10—C9119.0 (5)O16—Ba—O18118.10 (16)
C11—C10—H10120.5O7—Ba—O868.72 (14)
C9—C10—H10120.5O17—Ba—O8151.36 (13)
C10—C11—C12125.5 (5)O15—Ba—O867.76 (13)
C10—C11—N6116.1 (5)O14—Ba—O855.05 (12)
C12—C11—N6118.4 (5)O16—Ba—O8130.63 (15)
O14—C12—C7125.4 (5)O18—Ba—O8111.25 (17)
O14—C12—C11124.0 (5)O7—Ba—O155.28 (11)
C7—C12—C11110.5 (4)O17—Ba—O163.37 (13)
O1—N1—O2122.1 (5)O15—Ba—O1155.78 (13)
O1—N1—C1119.7 (4)O14—Ba—O163.12 (13)
O2—N1—C1118.1 (4)O16—Ba—O176.72 (13)
O3—N2—O4123.7 (5)O18—Ba—O1103.48 (13)
O3—N2—C5119.1 (5)O8—Ba—O193.27 (12)
O4—N2—C5117.2 (5)O7—Ba—O11iii131.55 (13)
O6—N3—O5122.5 (5)O17—Ba—O11iii64.06 (14)
O6—N3—C3118.8 (5)O15—Ba—O11iii74.48 (13)
O5—N3—C3118.6 (5)O14—Ba—O11iii137.85 (13)
O8—N4—O9121.6 (4)O16—Ba—O11iii67.90 (14)
O8—N4—C7120.0 (4)O18—Ba—O11iii62.99 (16)
O9—N4—C7118.3 (4)O8—Ba—O11iii141.18 (13)
O10—N5—O11122.6 (5)O1—Ba—O11iii125.55 (12)
O10—N5—C9118.4 (5)O7—Ba—O5i66.63 (12)
O11—N5—C9119.0 (5)O17—Ba—O5i119.27 (15)
O12—N6—O13123.0 (6)O15—Ba—O5i77.31 (14)
O12—N6—C11119.4 (5)O14—Ba—O5i139.51 (12)
O13—N6—C11117.6 (5)O16—Ba—O5i59.42 (14)
N1—O1—Ba133.3 (3)O18—Ba—O5i134.99 (15)
N3—O5—Bai109.7 (4)O8—Ba—O5i85.35 (12)
C2—O7—Ba123.8 (3)O1—Ba—O5i117.49 (13)
N4—O8—Ba146.8 (3)O11iii—Ba—O5i77.80 (13)
N5—O11—Baii120.5 (4)
C6—C1—C2—O7178.6 (5)C10—C11—N6—O12146.4 (6)
N1—C1—C2—O7−2.5 (8)C12—C11—N6—O12−33.9 (9)
C6—C1—C2—C3−1.8 (7)C10—C11—N6—O13−32.8 (8)
N1—C1—C2—C3177.2 (4)C12—C11—N6—O13146.9 (6)
O7—C2—C3—C4−176.1 (5)O2—N1—O1—Ba−164.9 (4)
C1—C2—C3—C44.2 (7)C1—N1—O1—Ba15.9 (8)
O7—C2—C3—N33.8 (8)O6—N3—O5—Bai17.7 (7)
C1—C2—C3—N3−175.8 (4)C3—N3—O5—Bai−160.0 (3)
C2—C3—C4—C5−3.9 (8)C1—C2—O7—Ba−65.4 (6)
N3—C3—C4—C5176.2 (5)C3—C2—O7—Ba115.0 (5)
C3—C4—C5—C60.8 (8)O9—N4—O8—Ba−178.2 (5)
C3—C4—C5—N2−177.6 (5)C7—N4—O8—Ba1.9 (10)
C4—C5—C6—C11.5 (8)O10—N5—O11—Baii7.9 (8)
N2—C5—C6—C1179.9 (5)C9—N5—O11—Baii−171.3 (4)
C2—C1—C6—C5−0.9 (8)C7—C12—O14—Ba−42.3 (9)
N1—C1—C6—C5−179.8 (5)C11—C12—O14—Ba140.1 (5)
C12—C7—C8—C90.0 (8)C2—O7—Ba—O17105.6 (4)
N4—C7—C8—C9−179.1 (5)C2—O7—Ba—O15−85.0 (4)
C7—C8—C9—C101.5 (8)C2—O7—Ba—O147.9 (4)
C7—C8—C9—N5−179.1 (5)C2—O7—Ba—O16155.6 (4)
C8—C9—C10—C11−2.2 (8)C2—O7—Ba—O1849.6 (6)
N5—C9—C10—C11178.4 (5)C2—O7—Ba—O8−44.7 (4)
C9—C10—C11—C121.5 (9)C2—O7—Ba—O165.4 (4)
C9—C10—C11—N6−178.9 (5)C2—O7—Ba—O11iii174.8 (4)
C8—C7—C12—O14−178.6 (5)C2—O7—Ba—O5i−138.9 (4)
N4—C7—C12—O140.5 (8)C12—O14—Ba—O7−25.0 (6)
C8—C7—C12—C11−0.7 (7)C12—O14—Ba—O17−130.9 (6)
N4—C7—C12—C11178.4 (4)C12—O14—Ba—O1599.6 (6)
C10—C11—C12—O14177.9 (6)C12—O14—Ba—O16−74.3 (6)
N6—C11—C12—O14−1.8 (8)C12—O14—Ba—O18169.9 (6)
C10—C11—C12—C70.0 (8)C12—O14—Ba—O839.5 (6)
N6—C11—C12—C7−179.7 (5)C12—O14—Ba—O1−76.1 (6)
C6—C1—N1—O1−156.2 (5)C12—O14—Ba—O11iii169.6 (5)
C2—C1—N1—O124.8 (7)C12—O14—Ba—O5i25.7 (7)
C6—C1—N1—O224.6 (7)N4—O8—Ba—O785.4 (8)
C2—C1—N1—O2−154.4 (5)N4—O8—Ba—O171.1 (10)
C6—C5—N2—O3−176.0 (6)N4—O8—Ba—O15−129.7 (8)
C4—C5—N2—O32.4 (8)N4—O8—Ba—O14−18.9 (7)
C6—C5—N2—O42.7 (8)N4—O8—Ba—O16110.0 (8)
C4—C5—N2—O4−178.9 (6)N4—O8—Ba—O18−71.1 (8)
C4—C3—N3—O6−144.6 (5)N4—O8—Ba—O134.8 (8)
C2—C3—N3—O635.4 (7)N4—O8—Ba—O11iii−144.0 (7)
C4—C3—N3—O533.1 (7)N4—O8—Ba—O5i152.1 (8)
C2—C3—N3—O5−146.9 (5)N1—O1—Ba—O7−45.6 (5)
C8—C7—N4—O8−164.9 (5)N1—O1—Ba—O17178.3 (6)
C12—C7—N4—O815.9 (7)N1—O1—Ba—O1552.7 (7)
C8—C7—N4—O915.2 (7)N1—O1—Ba—O1463.4 (5)
C12—C7—N4—O9−164.0 (5)N1—O1—Ba—O16−115.5 (5)
C8—C9—N5—O10−1.7 (8)N1—O1—Ba—O18128.4 (5)
C10—C9—N5—O10177.7 (6)N1—O1—Ba—O815.6 (5)
C8—C9—N5—O11177.6 (5)N1—O1—Ba—O11iii−165.4 (5)
C10—C9—N5—O11−3.0 (8)N1—O1—Ba—O5i−70.9 (5)

Symmetry codes: (i) −x+2, −y+2, −z; (ii) x+1, y, z; (iii) x−1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O15—H15A···O7iv0.85 (4)2.20 (4)2.939 (6)145 (6)
O15—H15A···O6iv0.85 (4)2.33 (4)3.030 (7)140 (5)
O15—H15B···O9v0.85 (4)2.103 (6)2.953 (6)179 (7)
O16—H16A···O4iii0.85 (3)2.08 (4)2.806 (6)142 (5)
O16—H16B···O15vi0.85 (6)2.11 (3)2.906 (7)156 (6)
O17—H17A···O12vii0.85 (4)2.45 (3)3.258 (8)158 (6)
O17—H17B···O18vii0.85 (5)1.969 (17)2.805 (7)168 (7)
O18—H18A···O16iv0.85 (4)2.04 (3)2.822 (7)153 (7)
O18—H18B···O1viii0.85 (5)2.47 (3)3.241 (7)151 (6)

Symmetry codes: (iv) x, y−1, z; (v) −x+2, −y+1, −z; (iii) x−1, y, z; (vi) x, y+1, z; (vii) −x+2, y+1/2, −z+1/2; (viii) −x+2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2220).

References

  • Altomare, A., Gascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst 26, 343–350.
  • Brahadeeswaran, S., Venkataramanan, V. & Bhat, H. L. (1999). J. Cryst. Growth, 205, 548–553.
  • Brahadeeswaran, S., Venkataramanan, V., Sherwood, J. N. & Bhat, H. L. (1998). J. Mater. Chem.8, 613–618.
  • Bruker (1999). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 (Version 1.22) and SAINT-Plus (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Jonie Varjula, A., Vesta, C., Justin Raj, C., Dinakaran, S., Ramanand, A. & Jerome Das, S. (2007). Mater. Lett.61, 5053–5055.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Milton Boaz, B., Mary Linet, J., Varghese, B., Palanichamy, M. & Jerome Das, S. (2005). J. Cryst. Growth, 280, 448–451.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vesta, C., Uthrakumar, R., Justin Raj, C., Jonie Varjula, A., Mary Linet, J. & Jerome Das, S. (2007). J. Mater. Sci. Technol.23, 855–859.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography