PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): o625.
Published online 2008 February 27. doi:  10.1107/S160053680800473X
PMCID: PMC2960751

(4-Hydr­oxy-3-nitro­benz­yl)methyl­ammonium chloride

Abstract

The title compound, C8H11N2O3 +·Cl, was synthesized as an inter­mediate in the development of a new sugar sensor. The structure displays N—H(...)Cl and O—H(...)O hydrogen bonding, as well as weak O—H(...)Cl inter­actions and π–π stacking (3.298 Å). There are two formula units in the asymmetric unit.

Related literature

For related literature, see: James et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o625-scheme1.jpg

Experimental

Crystal data

  • C8H11N2O3 +·Cl
  • M r = 218.64
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o625-efi1.jpg
  • a = 7.7650 (2) Å
  • b = 10.5922 (3) Å
  • c = 13.5987 (4) Å
  • α = 70.262 (1)°
  • β = 78.368 (1)°
  • γ = 76.459 (1)°
  • V = 1014.27 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.36 mm−1
  • T = 173 (2) K
  • 0.48 × 0.39 × 0.36 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: none
  • 11798 measured reflections
  • 4901 independent reflections
  • 4057 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.094
  • S = 1.06
  • 4901 reflections
  • 257 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT-Plus (Bruker, 1999 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2006 [triangle]) and WinGX (Farrugia, 1999 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680800473X/hg2362sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800473X/hg2362Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Dr Manuel Fernandes of the Jan Boeyens Structural Chemistry Laboratory at the University of the Witwatersrand for his assistance in the acquisition of the crystallographic data. Aspen Pharmacare is acknowledged for their financial support.

supplementary crystallographic information

Comment

The title compound, (I), was synthesized as an intermediate in the development of a new sugar sensor (James et al., 1995). The compound itself is also novel and is being reported for the first time.

The structure consists of two molecules in the asymmetric unit (Figure 1). The cation consists of a planar nitro phenol ring with a methylaminomethyl group in the para position with respect to the hydroxy group (O1) on the ring. The methylammonium groups attached to the methylene carbon (C7) deviate from the plane of the ring with a torsion angle of -121.52 (13)° for C3A—C4A—C7A—N2A and -46.81 (16)° for C3B—C4B—C7B—N2B.

The structure exhibits both intermolecular (N1—H1···Cl) and intramolecular (O1—H1···O2) hydrogen bonding interactions (Table 1, Figure 2). The chloride ions act as hydrogen bond acceptors between adjacent molecules. Weak interactions are also observed between O1—H1···Cl1. These interactions, with a bond length of 2.87Å (O1A—H1A···Cl1Bi), are more likely weak Van der Waals interactions rather than true hydrogen bonds. See Table 1 for a full list of all hydrogen bond interactions. An interdigitated, layered structure is observed with the aromatic groups π–π stacking above each other and the methylaminomethyl group interacting with the chloride ions in hydrogen bonded layers (Figure 3).

Experimental

4-Chloromethyl-2-nitrophenol, 3.8 g (20 mmol), was dissolved in DMF (30 ml). To this was added triethylamine (3 ml) followed by 40% methylamine in H2O (5 ml, 58 mmol). The reaction was heated to 333 K and left to stir overnight. The solvent was removed under vacuum to afford an orange solid, which was recrystallized from methanol at room temperature. Yield 3.49 g (80%). Decomposition point 373–375 K.

1H-NMR (400 MHz, D2O): p.p.m. = 0.00 (TMS), 2.62 (s, 3H, CH3), 4.12 (s, 2H, CH2), 7.14 (d, J = 8.5 Hz, 1H, H5), 7.60 (d, J = 8.5 Hz, 1H, H6), 8.13 (s, 1H, H3).13C-NMR(100 MHz, D2O): p.p.m. = 0.00 (TMS), 32.58 (CH3), 51.50 (CH2),121.30 (C6), 123.50 (C4), 127.75 (C3), 136.86 (C2), 139.04 (C5), 154.76 (C1).

Refinement

Hydrogen atoms were located in the difference map then positioned geometrically, and allowed to ride on their respective parent atoms, with bond lengths of 0.99Å (CH2), 0.98Å (CH3), 0.95Å (CH), 0.98Å (NH2) or 0.84Å (OH). Isotropic displacement parameters for these atoms were set equal to 1.2 (CH2, CH and NH2), or 1.5 (CH3 and OH) times Ueq of the parent atom.

Figures

Fig. 1.
The asymmetric unit showing ellipsoids at the 50% probability level and the numbering scheme employed.
Fig. 2.
Diagram of the inter- and intramolecular hydrogen bonding. Hydrogen atoms have been omitted for clarity.
Fig. 3.
Depiction of the packing. Hydrogen atoms have been omitted for clarity.

Crystal data

C8H11N2O3+·ClZ = 4
Mr = 218.64F000 = 456
Triclinic, P1Dx = 1.432 Mg m3Dm = 1.432 Mg m3Dm measured by not measured
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.7650 (2) ÅCell parameters from 6008 reflections
b = 10.5922 (3) Åθ = 4.6–28.4º
c = 13.5987 (4) ŵ = 0.36 mm1
α = 70.262 (1)ºT = 173 (2) K
β = 78.368 (1)ºBlock, orange
γ = 76.459 (1)º0.48 × 0.39 × 0.36 mm
V = 1014.27 (5) Å3

Data collection

Bruker SMART CCD area-detector diffractometer4057 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Monochromator: graphiteθmax = 28.0º
T = 173(2) Kθmin = 1.6º
[var phi] and ω scansh = −10→10
Absorption correction: nonek = −13→13
11798 measured reflectionsl = −17→16
4901 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.094  w = 1/[σ2(Fo2) + (0.0542P)2 + 0.0174P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4901 reflectionsΔρmax = 0.24 e Å3
257 parametersΔρmin = −0.31 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1A0.07924 (17)0.64421 (12)0.39067 (10)0.0280 (3)
C2A−0.05629 (16)0.60295 (12)0.36161 (10)0.0266 (3)
C3A−0.02230 (17)0.54096 (12)0.28266 (10)0.0277 (3)
H3A−0.11680.51290.26520.033*
C4A0.14689 (17)0.52009 (12)0.22990 (10)0.0272 (3)
C5A0.28403 (17)0.55999 (13)0.25897 (11)0.0311 (3)
H5A0.40220.54520.22380.037*
C6A0.25051 (17)0.61995 (13)0.33725 (11)0.0318 (3)
H6A0.34620.64560.35560.038*
C7A0.17964 (18)0.46001 (13)0.14103 (11)0.0328 (3)
H7A0.06580.44120.13180.039*
H7B0.22240.52690.07490.039*
C8A0.3333 (2)0.26316 (15)0.07972 (12)0.0408 (3)
H8A0.22000.23590.08190.061*
H8B0.42770.18220.09340.061*
H8C0.36460.32630.01000.061*
N1A−0.23762 (14)0.62436 (11)0.41284 (10)0.0339 (3)
N2A0.31439 (14)0.33107 (10)0.16086 (8)0.0270 (2)
H2A0.42330.35030.16210.032*
H2B0.28070.27260.22590.032*
O1A0.06011 (13)0.70500 (10)0.46491 (8)0.0388 (2)
H1A−0.04650.71230.49390.058*
O2A−0.27172 (14)0.68749 (10)0.47848 (9)0.0457 (3)
O3A−0.35065 (13)0.58060 (12)0.39075 (10)0.0518 (3)
C1B0.08090 (17)0.14787 (12)0.89457 (10)0.0271 (3)
C2B−0.03119 (15)0.10203 (12)0.85044 (10)0.0248 (3)
C3B0.03195 (16)0.04521 (12)0.76886 (10)0.0256 (3)
H3B−0.04830.01640.74010.031*
C4B0.21073 (16)0.03066 (12)0.72966 (10)0.0251 (3)
C5B0.32453 (17)0.07415 (13)0.77435 (11)0.0294 (3)
H5B0.44860.06360.74880.035*
C6B0.26146 (17)0.13157 (13)0.85399 (11)0.0317 (3)
H6B0.34230.16080.88210.038*
C7B0.28683 (17)−0.02588 (12)0.63923 (10)0.0285 (3)
H7C0.25380.04400.57290.034*
H7D0.4189−0.04550.63400.034*
C8B0.3304 (2)−0.22269 (14)0.57491 (11)0.0383 (3)
H8D0.3227−0.16180.50280.057*
H8E0.2844−0.30510.58410.057*
H8F0.4554−0.24780.58790.057*
N1B−0.22054 (14)0.11494 (11)0.88843 (9)0.0311 (3)
N2B0.22290 (13)−0.15229 (10)0.65039 (9)0.0260 (2)
H2C0.2293−0.21000.71800.031*
H2D0.1052−0.13060.63910.031*
O1B0.03022 (13)0.20461 (10)0.97277 (8)0.0357 (2)
H1B−0.08050.20950.99120.054*
O2B−0.28171 (13)0.17175 (11)0.95706 (8)0.0424 (3)
O3B−0.31379 (13)0.06993 (12)0.85167 (10)0.0492 (3)
Cl1A0.70902 (4)0.37097 (3)0.13787 (3)0.03519 (10)
Cl1B0.18542 (4)0.12266 (3)0.36875 (2)0.03163 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C1A0.0284 (6)0.0254 (6)0.0266 (7)−0.0009 (5)−0.0051 (5)−0.0051 (5)
C2A0.0210 (6)0.0246 (6)0.0276 (7)−0.0023 (5)−0.0007 (5)−0.0024 (5)
C3A0.0258 (6)0.0239 (6)0.0309 (7)−0.0044 (5)−0.0065 (5)−0.0039 (5)
C4A0.0286 (6)0.0240 (6)0.0247 (6)−0.0008 (5)−0.0042 (5)−0.0041 (5)
C5A0.0213 (6)0.0327 (7)0.0350 (7)−0.0018 (5)−0.0002 (5)−0.0087 (6)
C6A0.0238 (6)0.0334 (7)0.0394 (8)−0.0037 (5)−0.0074 (6)−0.0119 (6)
C7A0.0336 (7)0.0331 (7)0.0283 (7)0.0017 (6)−0.0063 (6)−0.0088 (6)
C8A0.0502 (9)0.0437 (8)0.0341 (8)−0.0092 (7)−0.0013 (7)−0.0208 (7)
N1A0.0250 (6)0.0310 (6)0.0382 (7)−0.0029 (5)0.0015 (5)−0.0055 (5)
N2A0.0277 (5)0.0285 (5)0.0241 (5)−0.0061 (4)−0.0002 (4)−0.0083 (4)
O1A0.0370 (5)0.0461 (6)0.0373 (6)−0.0035 (5)−0.0040 (5)−0.0213 (5)
O2A0.0373 (6)0.0484 (6)0.0471 (7)−0.0046 (5)0.0121 (5)−0.0213 (5)
O3A0.0232 (5)0.0635 (7)0.0721 (8)−0.0122 (5)0.0004 (5)−0.0258 (6)
C1B0.0277 (6)0.0275 (6)0.0248 (6)−0.0024 (5)−0.0058 (5)−0.0066 (5)
C2B0.0207 (6)0.0238 (6)0.0269 (6)−0.0030 (5)−0.0032 (5)−0.0045 (5)
C3B0.0236 (6)0.0245 (6)0.0287 (7)−0.0049 (5)−0.0061 (5)−0.0065 (5)
C4B0.0244 (6)0.0231 (6)0.0251 (6)−0.0025 (5)−0.0046 (5)−0.0044 (5)
C5B0.0211 (6)0.0338 (7)0.0320 (7)−0.0029 (5)−0.0052 (5)−0.0085 (6)
C6B0.0258 (6)0.0382 (7)0.0353 (7)−0.0063 (5)−0.0100 (6)−0.0128 (6)
C7B0.0292 (6)0.0286 (6)0.0264 (7)−0.0069 (5)−0.0011 (5)−0.0072 (5)
C8B0.0434 (8)0.0395 (8)0.0332 (8)−0.0029 (6)0.0012 (6)−0.0193 (6)
N1B0.0233 (5)0.0322 (6)0.0359 (7)−0.0050 (5)−0.0010 (5)−0.0098 (5)
N2B0.0232 (5)0.0282 (5)0.0255 (5)−0.0020 (4)−0.0036 (4)−0.0084 (4)
O1B0.0335 (5)0.0462 (6)0.0327 (5)−0.0062 (4)−0.0038 (4)−0.0200 (4)
O2B0.0322 (5)0.0554 (6)0.0411 (6)−0.0068 (5)0.0061 (4)−0.0237 (5)
O3B0.0251 (5)0.0671 (7)0.0690 (8)−0.0133 (5)−0.0015 (5)−0.0376 (6)
Cl1A0.02968 (17)0.0419 (2)0.02772 (18)−0.00866 (14)−0.00213 (13)−0.00206 (14)
Cl1B0.02849 (17)0.03788 (18)0.02609 (18)−0.00808 (13)−0.00452 (13)−0.00475 (13)

Geometric parameters (Å, °)

C1A—O1A1.3378 (15)C1B—O1B1.3413 (15)
C1A—C6A1.3924 (18)C1B—C6B1.3925 (18)
C1A—C2A1.3981 (18)C1B—C2B1.3996 (17)
C2A—C3A1.3908 (18)C2B—C3B1.3882 (17)
C2A—N1A1.4425 (16)C2B—N1B1.4473 (15)
C3A—C4A1.3713 (18)C3B—C4B1.3755 (17)
C3A—H3A0.9500C3B—H3B0.9500
C4A—C5A1.4008 (18)C4B—C5B1.3994 (17)
C4A—C7A1.5000 (18)C4B—C7B1.5030 (17)
C5A—C6A1.3682 (19)C5B—C6B1.3691 (18)
C5A—H5A0.9500C5B—H5B0.9500
C6A—H6A0.9500C6B—H6B0.9500
C7A—N2A1.4928 (16)C7B—N2B1.4852 (15)
C7A—H7A0.9900C7B—H7C0.9900
C7A—H7B0.9900C7B—H7D0.9900
C8A—N2A1.4759 (16)C8B—N2B1.4788 (16)
C8A—H8A0.9800C8B—H8D0.9800
C8A—H8B0.9800C8B—H8E0.9800
C8A—H8C0.9800C8B—H8F0.9800
N1A—O3A1.2109 (15)N1B—O3B1.2125 (14)
N1A—O2A1.2406 (15)N1B—O2B1.2350 (14)
N2A—H2A0.9200N2B—H2C0.9200
N2A—H2B0.9200N2B—H2D0.9200
O1A—H1A0.8400O1B—H1B0.8400
O1A—C1A—C6A116.81 (12)O1B—C1B—C6B117.37 (11)
O1A—C1A—C2A126.21 (12)O1B—C1B—C2B125.88 (12)
C6A—C1A—C2A116.98 (12)C6B—C1B—C2B116.74 (11)
C3A—C2A—C1A121.68 (12)C3B—C2B—C1B122.28 (11)
C3A—C2A—N1A117.71 (11)C3B—C2B—N1B117.56 (11)
C1A—C2A—N1A120.61 (11)C1B—C2B—N1B120.15 (11)
C4A—C3A—C2A120.34 (12)C4B—C3B—C2B119.98 (11)
C4A—C3A—H3A119.8C4B—C3B—H3B120.0
C2A—C3A—H3A119.8C2B—C3B—H3B120.0
C3A—C4A—C5A118.47 (12)C3B—C4B—C5B118.22 (11)
C3A—C4A—C7A119.74 (12)C3B—C4B—C7B122.67 (11)
C5A—C4A—C7A121.76 (12)C5B—C4B—C7B119.08 (11)
C6A—C5A—C4A121.07 (12)C6B—C5B—C4B121.63 (12)
C6A—C5A—H5A119.5C6B—C5B—H5B119.2
C4A—C5A—H5A119.5C4B—C5B—H5B119.2
C5A—C6A—C1A121.45 (12)C5B—C6B—C1B121.13 (12)
C5A—C6A—H6A119.3C5B—C6B—H6B119.4
C1A—C6A—H6A119.3C1B—C6B—H6B119.4
N2A—C7A—C4A111.77 (10)N2B—C7B—C4B113.02 (10)
N2A—C7A—H7A109.3N2B—C7B—H7C109.0
C4A—C7A—H7A109.3C4B—C7B—H7C109.0
N2A—C7A—H7B109.3N2B—C7B—H7D109.0
C4A—C7A—H7B109.3C4B—C7B—H7D109.0
H7A—C7A—H7B107.9H7C—C7B—H7D107.8
N2A—C8A—H8A109.5N2B—C8B—H8D109.5
N2A—C8A—H8B109.5N2B—C8B—H8E109.5
H8A—C8A—H8B109.5H8D—C8B—H8E109.5
N2A—C8A—H8C109.5N2B—C8B—H8F109.5
H8A—C8A—H8C109.5H8D—C8B—H8F109.5
H8B—C8A—H8C109.5H8E—C8B—H8F109.5
O3A—N1A—O2A122.35 (12)O3B—N1B—O2B122.23 (11)
O3A—N1A—C2A119.40 (12)O3B—N1B—C2B118.92 (11)
O2A—N1A—C2A118.25 (11)O2B—N1B—C2B118.84 (10)
C8A—N2A—C7A112.24 (11)C8B—N2B—C7B111.57 (10)
C8A—N2A—H2A109.2C8B—N2B—H2C109.3
C7A—N2A—H2A109.2C7B—N2B—H2C109.3
C8A—N2A—H2B109.2C8B—N2B—H2D109.3
C7A—N2A—H2B109.2C7B—N2B—H2D109.3
H2A—N2A—H2B107.9H2C—N2B—H2D108.0
C1A—O1A—H1A109.5C1B—O1B—H1B109.5
O1A—C1A—C2A—C3A179.66 (12)O1B—C1B—C2B—C3B179.51 (12)
C6A—C1A—C2A—C3A−0.25 (19)C6B—C1B—C2B—C3B−1.17 (19)
O1A—C1A—C2A—N1A0.0 (2)O1B—C1B—C2B—N1B0.5 (2)
C6A—C1A—C2A—N1A−179.92 (11)C6B—C1B—C2B—N1B179.83 (11)
C1A—C2A—C3A—C4A−0.80 (19)C1B—C2B—C3B—C4B0.92 (19)
N1A—C2A—C3A—C4A178.87 (11)N1B—C2B—C3B—C4B179.94 (11)
C2A—C3A—C4A—C5A1.30 (18)C2B—C3B—C4B—C5B0.13 (18)
C2A—C3A—C4A—C7A−176.71 (11)C2B—C3B—C4B—C7B−178.01 (11)
C3A—C4A—C5A—C6A−0.77 (19)C3B—C4B—C5B—C6B−0.89 (19)
C7A—C4A—C5A—C6A177.19 (12)C7B—C4B—C5B—C6B177.32 (12)
C4A—C5A—C6A—C1A−0.3 (2)C4B—C5B—C6B—C1B0.6 (2)
O1A—C1A—C6A—C5A−179.13 (12)O1B—C1B—C6B—C5B179.78 (12)
C2A—C1A—C6A—C5A0.8 (2)C2B—C1B—C6B—C5B0.4 (2)
C3A—C4A—C7A—N2A−121.52 (13)C3B—C4B—C7B—N2B−46.81 (16)
C5A—C4A—C7A—N2A60.54 (16)C5B—C4B—C7B—N2B135.07 (12)
C3A—C2A—N1A—O3A4.67 (18)C3B—C2B—N1B—O3B3.65 (18)
C1A—C2A—N1A—O3A−175.66 (12)C1B—C2B—N1B—O3B−177.30 (12)
C3A—C2A—N1A—O2A−175.38 (12)C3B—C2B—N1B—O2B−176.18 (11)
C1A—C2A—N1A—O2A4.30 (18)C1B—C2B—N1B—O2B2.86 (18)
C4A—C7A—N2A—C8A173.76 (12)C4B—C7B—N2B—C8B−166.60 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2A—H2A···Cl1A0.922.233.1301 (11)167
N2A—H2B···Cl1B0.922.183.0898 (11)173
O1A—H1A···O2A0.841.892.5917 (14)140
O1A—H1A···Cl1Bi0.842.873.3918 (10)122
N2B—H2C···Cl1Aii0.922.173.0775 (11)168
N2B—H2D···Cl1Biii0.922.263.1671 (10)168
O1B—H1B···O2B0.841.882.5860 (14)141

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y, −z+1; (iii) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2362).

References

  • Bruker (1999). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • James, T. D., Sandanayake, K. R. A. S., Iuguchi, R. & Shinkai, S. (1995). J. Am. Chem. Soc.117, 8982–8987.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography