PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): m487–m488.
Published online 2008 February 20. doi:  10.1107/S1600536808004406
PMCID: PMC2960750

cis-Dichlorido[4,4,5,5-tetra­methyl-2-(2-pyrid­yl)-2-imidazoline-1-ox­yl]­palladium(II) tetra­hydro­furan hemi­solvate

Abstract

The asymmetric unit of the title complex, [PdCl2(C12H16N3O)]·0.5C4H8O, consists of one palladium complex in a general position and one half tetra­hydro­furan (THF) solvent mol­ecule, with the O atom lying on a twofold rotation axis. The PdII atom is bound to one chelating imino nitroxide radical through two N atoms, one from the pyridyl ring and the other from the imidazoline ring. The coordination of the metal centre is completed by two Cl atoms in a cis configuration, leading to a quasi-square-planar coordination of the metal centre. The four atoms that define the PdII coordination environment and the eight atoms that belong to the pyridylimine fragment are coplanar, with no deviation larger than 0.087 (5) Å. In the crystal structure, inter­molecular inter­actions shorter than the corresponding van der Waals radii sum are observed only between PdII complexes, and no short contact is observed around the THF mol­ecule. Weak C—H(...)O and C—H(...)Cl inter­actions yield a two-dimensional network of complexes in the (101) plane.

Related literature

For related literature, see: Caneschi et al. (1991 [triangle]); Davis et al. (1972 [triangle]); Evans et al. (1968 [triangle]); Fettouhi et al. (2003 [triangle]); Li et al. (2004 [triangle]); Ma et al. (2006 [triangle], 2007 [triangle]); Oshio et al. (1996 [triangle]); Ueda et al. (2003 [triangle], 2005 [triangle]); Ullman & Holm (1970 [triangle]); Xu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m487-scheme1.jpg

Experimental

Crystal data

  • [PdCl2(C12H16N3O)]·0.5C4H8O
  • M r = 431.65
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m487-efi2.jpg
  • a = 19.1398 (10) Å
  • b = 15.2061 (12) Å
  • c = 13.8291 (10) Å
  • β = 123.415 (3)°
  • V = 3359.6 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.43 mm−1
  • T = 293 (2) K
  • 0.7 × 0.3 × 0.3 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 5707 measured reflections
  • 3065 independent reflections
  • 2049 reflections with I > 2σ(I)
  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.152
  • S = 1.03
  • 3065 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.61 e Å−3
  • Δρmin = −0.95 e Å−3

Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: HKL DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808004406/dn2318sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004406/dn2318Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Centre de Diffractomtétrie de l’Université de Rennes 1 CDiFX for the data collection.

supplementary crystallographic information

Comment

Organic nitronyl nitroxide radicals have attracted much attention for their magnetic properties in general and ferromagnetism in particular. Then several transition metal complexes with stable nitronyl nitroxide radical ligands have been prepared and extensively investigated (Ma et al., 2007; Xu et al., 2007; Ma et al., 2006; Ueda et al., 2005; Li et al., 2004; Ueda et al., 2003; Oshio et al., 1996; Caneschi et al., 1991). Our contribution in this field is the synthesis (see Scheme 1) and structure characterization of the title compound.

The molecular structure of the complex [Pd(IM2py)Cl2] 0.5THF(I) is shown in Fig. 1 while selected geometric parameters are given in Table 1. Focusing the coordination square of PdII, one can notice that Cl2 atom deviates significantly from the phane defined with atoms N3/N1/Pd1/Cl1 by 0.0843 (23) Å. The mean bond distance of Pd—Cl 2.277 Å is in agreement with the values observed in a similar complex while the average bond length of Pd—N 2.045 Å is slightly longer than seen previously (Fettouhi et al., 2003). Due to a chelation of the iminonitroxide radical with PdII ion, the four atoms which define the PdII coordination plane and the eight atoms which belong to both pyridyl ring and imino fragment are coplanar, the larger deviation to the plane is equal to 0.087 (5) and -0.064 (5) Å for O1 and N3 respectively. Only sp3 carbon C7 and C8 from imino and methyl carbon C9, C10, C11 and C12 deviate significantly from the mean plane.

In the packing, one can notice that intermolecular interactions shorter than the corresponding van-der-Waals radii are only observed between PdII complexes, no short contact are observed around THF molecule. Centrosymetric contacts take place between imino and pyridyl ring (O1—H4) of one neighbouring complex as well as contacts between chlorine Cl1 and H10B atom of methylene group (Table 1). These contacts yield a two-dimensional network of interacting complexes along the (101) plane (Fig. 2). Another short contact is observed between two adjacent 2-D networks thanks to a van-der-Waals interaction between two C1 atoms of pyridyl rings of two neighbouring molecules with C1—C1 3.393 (16) Å. The shortest distance between two palladium take place between ions from two adjacent planes (Pd1—Pd1 = 3.648 (2) Å), onto a plane, the shorter Pd1—Pd1 distance is 8.7834 (7) Å. THF solvent molecules are lying between two planes. A contact O1s—H1 of 2.7445 Å is observed with pyridyl ring.

Experimental

Dichlorobis benzonitrile palladium(II) PdCl2(PhCN)2 and 2-(ortho- pyridyl)-4,4,5,5-tetramethyl imidazoline-1-oxyl-3-oxyde (NIT2Py) were synthesized according to literature method (Evans et al., 1968; Ullman & Holm, 1970; Davis et al., 1972). The complex Pd(IM2py)Cl2 was synthesized as follows: The reaction was performed under a dry nitrogen atmosphere using standard schlenk technique. All solvents used were distilled under nitrogen. To a solution of PdCl2(PhCN)2 (0.1 g;0.26 mmol) in 30 ml of toluene was added with stirring a solution of the radical NIT2Py (0.12 g;0.52 mmol) in 20 ml of toluene. After 2 h of stirring at room temperature, the mixture was filtered and the solvent removed under reduced pressure. Parallelepipedic brown crystals of complex (I) suitable for x-ray crystallographic analysis were obtained by slow diffusion of hexane in THF solution of complex (I).

Refinement

All H atoms were placed in calculated positions and treated as riding model with C—H ranging from 0.93 Å [Uiso(H) = 1.2Ueq(C)] for pyridyl ring to 0.96—0.97 Å with Uiso(H) = 1.5Ueq(C)—1.2Ueq(C)) for methyl and methylene respectively.

Figures

Fig. 1.
An ORTEP drawing of title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme. The labels of the H atoms have been omitted for clarity. [Symmetry codes: (i) -x + 1, y, -z + 1.5]
Fig. 2.
Partial packing view showing the formation of a two-dimensionnal network through C—H···O and C—H···Cl intermolecular interactions. H bonds are shown as dashed lines. H atoms not involved ...
Fig. 3.
The formation of the title compound.

Crystal data

[PdCl2(C12H16N3O)]·0.5C4H8OF000 = 1736
Mr = 431.65Dx = 1.707 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2981 reflections
a = 19.1398 (10) Åθ = 2.6–25.4º
b = 15.2061 (12) ŵ = 1.43 mm1
c = 13.8291 (10) ÅT = 293 (2) K
β = 123.415 (3)ºThick plate, brown
V = 3359.6 (4) Å30.7 × 0.3 × 0.3 mm
Z = 8

Data collection

Nonius KappaCCD diffractometer2049 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
Monochromator: graphiteθmax = 25.4º
T = 293(2) Kθmin = 3.0º
[var phi] and ω scansh = −22→22
Absorption correction: nonek = −17→18
5707 measured reflectionsl = −16→16
3065 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.152  w = 1/[σ2(Fo2) + (0.0709P)2 + 4.5052P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3065 reflectionsΔρmax = 0.61 e Å3
199 parametersΔρmin = −0.95 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. Multiscan absorption correction methods did not yield a better refinement agreement, then no correction was applied.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4332 (5)0.2973 (4)0.6038 (6)0.0604 (18)
H10.41960.35110.62140.073*
C20.4905 (5)0.2955 (5)0.5741 (8)0.072 (2)
H20.51540.34750.57230.087*
C30.5113 (5)0.2173 (5)0.5470 (6)0.0603 (18)
H30.54970.21510.52580.072*
C40.4733 (5)0.1419 (4)0.5520 (6)0.0558 (18)
H40.48510.08770.53300.067*
C50.4172 (4)0.1475 (4)0.5858 (5)0.0443 (14)
C60.3741 (4)0.0747 (4)0.5988 (5)0.0445 (14)
C70.3264 (5)−0.0669 (4)0.6000 (6)0.0560 (17)
C80.2934 (4)0.0028 (4)0.6501 (6)0.0498 (16)
C90.2604 (6)−0.0980 (6)0.4783 (7)0.081 (2)
H9A0.2328−0.04790.42940.122*
H9B0.2201−0.13390.48060.122*
H9C0.2867−0.13170.44800.122*
C100.3725 (5)−0.1451 (5)0.6789 (8)0.078 (2)
H10A0.3899−0.18430.64150.117*
H10B0.3359−0.17570.69460.117*
H10C0.4208−0.12460.75030.117*
C110.1983 (5)0.0032 (5)0.5897 (7)0.076 (2)
H11A0.18240.05010.62020.114*
H11B0.1805−0.05200.60300.114*
H11C0.17230.01160.50800.114*
C120.3364 (5)−0.0032 (5)0.7811 (6)0.067 (2)
H12A0.3951−0.01430.81670.101*
H12B0.3121−0.05020.79940.101*
H12C0.32920.05130.80980.101*
N10.3961 (3)0.2250 (3)0.6084 (5)0.0470 (12)
N20.3857 (4)−0.0129 (3)0.5888 (5)0.0512 (13)
N30.3211 (3)0.0884 (3)0.6270 (5)0.0509 (13)
O10.4363 (3)−0.0447 (3)0.5657 (5)0.0687 (14)
Cl10.21890 (16)0.20499 (14)0.7093 (2)0.0865 (7)
Cl20.30744 (14)0.36626 (13)0.67356 (19)0.0761 (6)
Pd10.30983 (3)0.21827 (3)0.65241 (5)0.0534 (2)
O1S0.50000.4980 (7)0.75000.177 (7)
C2S0.5251 (8)0.5487 (7)0.6926 (10)0.108 (3)
H2S10.49490.53190.61160.130*
H2S20.58450.54080.72630.130*
C3S0.5078 (9)0.6386 (6)0.7032 (11)0.118 (4)
H3S10.45900.65950.63120.142*
H3S20.55520.67580.72350.142*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.069 (5)0.050 (4)0.066 (5)0.003 (3)0.040 (4)−0.004 (3)
C20.077 (6)0.059 (5)0.091 (6)−0.023 (4)0.052 (5)−0.002 (4)
C30.060 (4)0.068 (5)0.065 (5)−0.006 (4)0.041 (4)0.000 (4)
C40.071 (5)0.053 (4)0.064 (5)0.003 (3)0.050 (4)0.003 (3)
C50.050 (4)0.045 (3)0.039 (3)−0.002 (3)0.026 (3)−0.002 (3)
C60.050 (4)0.046 (3)0.048 (4)0.004 (3)0.034 (3)0.003 (3)
C70.068 (5)0.046 (3)0.073 (5)−0.006 (3)0.050 (4)0.001 (3)
C80.050 (4)0.053 (4)0.054 (4)0.000 (3)0.034 (4)0.008 (3)
C90.095 (7)0.079 (5)0.083 (6)−0.018 (5)0.057 (6)−0.017 (5)
C100.100 (7)0.060 (5)0.105 (7)0.009 (4)0.075 (6)0.022 (4)
C110.061 (5)0.085 (6)0.091 (6)−0.010 (4)0.048 (5)0.000 (5)
C120.074 (5)0.078 (5)0.060 (5)−0.003 (4)0.044 (4)0.005 (4)
N10.051 (3)0.043 (3)0.049 (3)−0.002 (2)0.029 (3)0.002 (2)
N20.059 (3)0.043 (3)0.067 (4)0.006 (3)0.044 (3)0.006 (2)
N30.056 (3)0.052 (3)0.057 (3)0.006 (3)0.039 (3)0.005 (2)
O10.083 (4)0.052 (3)0.103 (4)0.014 (3)0.072 (4)0.004 (3)
Cl10.0970 (17)0.0960 (15)0.1066 (18)0.0216 (13)0.0814 (16)0.0034 (12)
Cl20.0873 (15)0.0578 (10)0.0865 (15)0.0200 (10)0.0499 (13)−0.0037 (9)
Pd10.0586 (4)0.0552 (3)0.0549 (4)0.0116 (3)0.0366 (3)−0.0002 (2)
O1S0.249 (17)0.068 (6)0.35 (2)0.0000.246 (18)0.000
C2S0.116 (9)0.094 (7)0.134 (10)−0.007 (6)0.081 (8)−0.014 (7)
C3S0.178 (12)0.073 (6)0.142 (10)−0.025 (7)0.113 (10)−0.009 (6)

Geometric parameters (Å, °)

C1—N11.329 (8)C10—H10A0.9600
C1—C21.367 (11)C10—H10B0.9600
C1—H10.9300C10—H10C0.9600
C2—C31.370 (10)C11—H11A0.9600
C2—H20.9300C11—H11B0.9600
C3—C41.381 (9)C11—H11C0.9600
C3—H30.9300C12—H12A0.9600
C4—C51.388 (8)C12—H12B0.9600
C4—H40.9300C12—H12C0.9600
C5—N11.338 (7)N1—Pd12.052 (5)
C5—C61.451 (8)N2—O11.269 (6)
C6—N31.289 (7)N3—Pd12.037 (5)
C6—N21.370 (8)Cl1—Pd12.280 (2)
C7—N21.476 (8)Cl2—Pd12.273 (2)
C7—C91.520 (11)O1S—C2Si1.370 (10)
C7—C101.524 (10)O1S—C2S1.370 (10)
C7—C81.576 (9)C2S—C3S1.433 (13)
C8—N31.505 (8)C2S—H2S10.9700
C8—C121.526 (9)C2S—H2S20.9700
C8—C111.529 (10)C3S—C3Si1.479 (18)
C9—H9A0.9600C3S—H3S10.9700
C9—H9B0.9600C3S—H3S20.9700
C9—H9C0.9600
N1—C1—C2122.5 (6)H10B—C10—H10C109.5
N1—C1—H1118.8C8—C11—H11A109.5
C2—C1—H1118.8C8—C11—H11B109.5
C1—C2—C3120.1 (7)H11A—C11—H11B109.5
C1—C2—H2120.0C8—C11—H11C109.5
C3—C2—H2120.0H11A—C11—H11C109.5
C2—C3—C4117.9 (6)H11B—C11—H11C109.5
C2—C3—H3121.1C8—C12—H12A109.5
C4—C3—H3121.1C8—C12—H12B109.5
C3—C4—C5119.4 (6)H12A—C12—H12B109.5
C3—C4—H4120.3C8—C12—H12C109.5
C5—C4—H4120.3H12A—C12—H12C109.5
N1—C5—C4121.5 (6)H12B—C12—H12C109.5
N1—C5—C6112.1 (5)C1—N1—C5118.6 (6)
C4—C5—C6126.3 (6)C1—N1—Pd1126.5 (4)
N3—C6—N2112.8 (5)C5—N1—Pd1114.9 (4)
N3—C6—C5120.7 (5)O1—N2—C6125.7 (5)
N2—C6—C5126.4 (5)O1—N2—C7123.5 (5)
N2—C7—C9106.0 (6)C6—N2—C7110.6 (5)
N2—C7—C10109.5 (6)C6—N3—C8110.5 (5)
C9—C7—C10110.5 (7)C6—N3—Pd1112.6 (4)
N2—C7—C8100.9 (5)C8—N3—Pd1136.0 (4)
C9—C7—C8113.9 (6)N3—Pd1—N179.58 (19)
C10—C7—C8115.1 (6)N3—Pd1—Cl2173.28 (15)
N3—C8—C12106.3 (5)N1—Pd1—Cl293.72 (14)
N3—C8—C11109.4 (5)N3—Pd1—Cl198.44 (15)
C12—C8—C11110.5 (5)N1—Pd1—Cl1176.70 (15)
N3—C8—C7102.5 (4)Cl2—Pd1—Cl188.28 (8)
C12—C8—C7113.4 (6)C2Si—O1S—C2S111.5 (11)
C11—C8—C7114.1 (6)O1S—C2S—C3S107.6 (9)
C7—C9—H9A109.5O1S—C2S—H2S1110.2
C7—C9—H9B109.5C3S—C2S—H2S1110.2
H9A—C9—H9B109.5O1S—C2S—H2S2110.2
C7—C9—H9C109.5C3S—C2S—H2S2110.2
H9A—C9—H9C109.5H2S1—C2S—H2S2108.5
H9B—C9—H9C109.5C2S—C3S—C3Si105.0 (6)
C7—C10—H10A109.5C2S—C3S—H3S1110.7
C7—C10—H10B109.5C3Si—C3S—H3S1110.7
H10A—C10—H10B109.5C2S—C3S—H3S2110.7
C7—C10—H10C109.5C3Si—C3S—H3S2110.7
H10A—C10—H10C109.5H3S1—C3S—H3S2108.8

Symmetry codes: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···O1ii0.932.613.307 (8)132
C10—H10B···Cl1iii0.962.773.691 (7)160

Symmetry codes: (ii) −x+1, −y, −z+1; (iii) −x+1/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2318).

References

  • Caneschi, A., Gatteschi, D. & Rey, P. (1991). Prog. Inorg. Chem.39, 331–429.
  • Davis, M. S., Morokuma, K. & Kreilick, R. W. (1972). J. Am. Chem. Soc.94, 5588–5592.
  • Evans, D., Osborn, J. A. & Wilkinson, G. (1968). Inorg. Synth.11, 99–101.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Fettouhi, M., El Ali, B., Morsy, M., Golhen, S., Ouahab, L., Le Guennic, B., Saillard, J. Y., Daro, N., Sutter, J. P. & Amouyal, E. (2003). Inorg. Chem.42, 1316–1321. [PubMed]
  • Li, L., Liao, D., Jiang, Z. & Yan, S. (2004). Inorg. Chim. Acta, 357, 405–410.
  • Ma, Y., Gao, D. Z., Zhang, W., Yoshimura, K., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2006). Inorg. Chim. Acta, 359, 4655–4659.
  • Ma, Y., Zhang, W., Yang, Y. O., Yoshimura, K., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2007). J. Mol. Struct.833, 98–101.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
  • Oshio, H., Ohto, A. & Ito, T. (1996). Chem. Commun. pp. 1541–1542.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Ueda, M., Itou, M., Okazawa, K., Mochida, T. & Mori, H. (2005). Polyhedron, 24, 2189–2193.
  • Ueda, M., Mochida, T., Itou, M., Asanagi, N. & Mori, H. (2003). Inorg. Chim. Acta, 348, 123–128.
  • Ullman, E. F. & Holm, R. H. (1970). J. Org. Chem.35, 3623–3631.
  • Xu, Y. H., Qu, X. N., Song, H. B., Li, L. C., Jiang, Z. H. & Liao, D. Z. (2007). Polyhedron, 26, 741–747.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography