PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): o641.
Published online 2008 February 29. doi:  10.1107/S1600536808005369
PMCID: PMC2960749

4-Hydr­oxy-2,2,6,6-tetra­methyl­piperidinium trichloro­acetate

Abstract

In the crystal structure of the title compound, C9H20NO+·Cl3CCOO, the cations and anions are connected via O—H(...)O, N—H(...)O, O—H(...)Cl and N—H(...)Cl hydrogen bonding. The six-membered ring adopts a chair conformation with the hydroxyl group in an equatorial position.

Related literature

For related literature, see: Borzatta & Carrozza (1991 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o641-scheme1.jpg

Experimental

Crystal data

  • C9H20NO+·C2Cl3O2
  • M r = 320.63
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o641-efi1.jpg
  • a = 6.3468 (13) Å
  • b = 14.450 (3) Å
  • c = 8.2175 (16) Å
  • β = 95.19 (3)°
  • V = 750.5 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.61 mm−1
  • T = 113 (2) K
  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Rigaku Saturn diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005 [triangle]) T min = 0.930, T max = 0.953
  • 5459 measured reflections
  • 2858 independent reflections
  • 2636 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.060
  • S = 1.06
  • 2858 reflections
  • 179 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.23 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 996 Friedel pairs
  • Flack parameter: 0.04 (4)

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808005369/hg2380sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005369/hg2380Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title compound was obtained as a byproduct in the synthesis of hindered amine light stabilizers preventing the degradation of polyolefins in sunlight, in which 2,2,6,6-tetramethylpiperidin-4-ol is a very important intermediate (Borzatta & Carrozza,1991). We report here the crystal structure 4-hydroxy-2,2,6,6-tetramethylpiperidinium trichloroacetate (Fig. 1). Intermolecular O—H···O, N—H···O, O—H···Cl, N—H···Cl hydrogen bonds are observed which help to establish the crystal packing. The piperidine ring adopts a chair conformation.

Experimental

0.25 g (1.6 mmol) of 2,2,6,6-tetramethylpiperidin-4-ol was dissolved in 3.2 ml of trichloroacetate acid solution (1.6 mmol, 0.26 g). Colorless crystals of the title compound were obtained by slow evaporation of the solvent.

Refinement

All H atoms bound to C atoms were constrained; positioned geometrically (C—H = 0.96–0.98 Å) and refined as riding with Uiso(H)=1.2Ueq(carrier) or 1.5eq(methyl groups). H atoms of O—H and N—H were located from difference maps and then refined freely.

Figures

Fig. 1.
Crystal structure of the title compound with atom labeling and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii.

Crystal data

C9H20NO+·C2Cl3O2F000 = 336
Mr = 320.63Dx = 1.419 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2559 reflections
a = 6.3468 (13) Åθ = 1.4–27.9º
b = 14.450 (3) ŵ = 0.61 mm1
c = 8.2175 (16) ÅT = 113 (2) K
β = 95.19 (3)ºBlock, colorless
V = 750.5 (3) Å30.12 × 0.10 × 0.08 mm
Z = 2

Data collection

Rigaku Saturn diffractometer2858 independent reflections
Radiation source: rotating anode2636 reflections with I > 2σ(I)
Monochromator: confocalRint = 0.028
T = 113(2) Kθmax = 27.9º
ω and [var phi] scansθmin = 2.5º
Absorption correction: multi-scan(CrystalClear; Rigaku/MSC, 2005)h = −8→8
Tmin = 0.930, Tmax = 0.953k = −15→19
5459 measured reflectionsl = −10→10

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.024  w = 1/[σ2(Fo2) + (0.0324P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.060(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.21 e Å3
2858 reflectionsΔρmin = −0.23 e Å3
179 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 996 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.04 (4)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.04464 (7)0.51471 (3)0.10942 (5)0.01980 (10)
Cl20.34863 (6)0.41431 (3)0.12885 (6)0.02203 (11)
Cl3−0.00077 (8)0.35637 (3)−0.09864 (5)0.02572 (11)
O10.7973 (2)0.47566 (9)0.51619 (17)0.0227 (3)
H10.798 (4)0.453 (2)0.415 (4)0.063 (10)*
O20.1032 (2)0.27147 (9)0.27469 (18)0.0247 (3)
O3−0.20242 (18)0.34925 (9)0.25644 (15)0.0169 (3)
N10.4803 (2)0.71305 (9)0.64562 (18)0.0111 (3)
C10.4608 (3)0.62855 (12)0.75507 (19)0.0129 (3)
C20.6286 (3)0.55858 (11)0.7135 (2)0.0139 (3)
H2A0.77010.58320.75150.017*
H2B0.60800.50050.77390.017*
C30.6235 (3)0.53661 (11)0.5324 (2)0.0159 (4)
H30.48760.50510.49450.019*
C40.6475 (3)0.62493 (13)0.4346 (2)0.0164 (3)
H4A0.63710.60900.31700.020*
H4B0.79050.65060.46380.020*
C50.4836 (3)0.69993 (12)0.46158 (19)0.0135 (3)
C60.2366 (3)0.58770 (13)0.7353 (2)0.0198 (4)
H6A0.13270.63770.73790.030*
H6B0.21910.54430.82480.030*
H6C0.21490.55500.63060.030*
C70.5076 (3)0.66393 (13)0.9293 (2)0.0189 (4)
H7A0.64950.69120.94190.028*
H7B0.50030.61241.00610.028*
H7C0.40290.71100.95190.028*
C80.2629 (3)0.67658 (13)0.3825 (2)0.0198 (4)
H8A0.15950.71930.42280.030*
H8B0.22660.61300.41040.030*
H8C0.26090.68250.26360.030*
C90.5521 (3)0.79290 (13)0.3950 (2)0.0213 (4)
H9A0.44500.83990.41230.032*
H9B0.56760.78710.27790.032*
H9C0.68780.81130.45230.032*
C100.0700 (3)0.40324 (12)0.09850 (19)0.0130 (3)
C11−0.0172 (3)0.33454 (11)0.2249 (2)0.0133 (3)
H1A0.373 (4)0.7546 (18)0.674 (3)0.037 (7)*
H1B0.610 (4)0.7410 (15)0.683 (3)0.025 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0227 (2)0.01408 (19)0.0232 (2)0.00440 (16)0.00505 (17)0.00388 (16)
Cl20.01100 (19)0.0235 (2)0.0318 (3)−0.00221 (15)0.00291 (17)0.00920 (19)
Cl30.0321 (3)0.0304 (3)0.0149 (2)−0.0025 (2)0.00289 (18)−0.00596 (17)
O10.0249 (7)0.0194 (7)0.0241 (7)0.0108 (5)0.0033 (6)−0.0052 (6)
O20.0147 (6)0.0220 (7)0.0377 (8)0.0023 (5)0.0044 (6)0.0151 (6)
O30.0125 (6)0.0160 (6)0.0230 (7)−0.0007 (5)0.0056 (5)−0.0007 (5)
N10.0114 (7)0.0098 (7)0.0124 (7)0.0007 (5)0.0033 (6)−0.0002 (5)
C10.0127 (8)0.0130 (8)0.0133 (8)0.0010 (6)0.0032 (6)0.0029 (6)
C20.0137 (8)0.0124 (8)0.0156 (9)0.0027 (6)0.0014 (7)0.0001 (6)
C30.0152 (8)0.0131 (8)0.0193 (9)0.0035 (6)0.0010 (7)−0.0028 (6)
C40.0164 (9)0.0187 (8)0.0149 (8)0.0020 (6)0.0049 (7)−0.0023 (7)
C50.0167 (8)0.0153 (8)0.0089 (7)0.0010 (6)0.0031 (6)0.0010 (6)
C60.0152 (9)0.0174 (9)0.0276 (10)−0.0007 (7)0.0059 (8)0.0059 (7)
C70.0228 (9)0.0215 (10)0.0127 (8)0.0047 (7)0.0028 (7)0.0000 (7)
C80.0196 (9)0.0215 (9)0.0176 (9)−0.0002 (7)−0.0023 (7)0.0013 (7)
C90.0272 (11)0.0164 (9)0.0214 (10)−0.0001 (7)0.0090 (8)0.0043 (7)
C100.0118 (8)0.0134 (8)0.0141 (8)0.0009 (6)0.0021 (6)0.0010 (6)
C110.0124 (8)0.0145 (8)0.0130 (8)−0.0019 (6)0.0010 (6)−0.0006 (6)

Geometric parameters (Å, °)

Cl1—C101.7729 (17)C4—C51.532 (2)
Cl2—C101.7710 (17)C4—H4A0.9900
Cl3—C101.7756 (17)C4—H4B0.9900
O1—C31.427 (2)C5—C81.528 (2)
O1—H10.89 (3)C5—C91.529 (3)
O2—C111.235 (2)C6—H6A0.9800
O3—C111.245 (2)C6—H6B0.9800
N1—C51.526 (2)C6—H6C0.9800
N1—C11.528 (2)C7—H7A0.9800
N1—H1A0.95 (3)C7—H7B0.9800
N1—H1B0.94 (2)C7—H7C0.9800
C1—C71.524 (2)C8—H8A0.9800
C1—C21.529 (2)C8—H8B0.9800
C1—C61.535 (2)C8—H8C0.9800
C2—C31.519 (2)C9—H9A0.9800
C2—H2A0.9900C9—H9B0.9800
C2—H2B0.9900C9—H9C0.9800
C3—C41.523 (2)C10—C111.573 (2)
C3—H31.0000
C3—O1—H1112.3 (19)C8—C5—C4113.00 (15)
C5—N1—C1119.53 (13)C9—C5—C4110.55 (15)
C5—N1—H1A113.1 (15)C1—C6—H6A109.5
C1—N1—H1A105.4 (15)C1—C6—H6B109.5
C5—N1—H1B106.5 (14)H6A—C6—H6B109.5
C1—N1—H1B105.4 (13)C1—C6—H6C109.5
H1A—N1—H1B106 (2)H6A—C6—H6C109.5
C7—C1—N1105.40 (13)H6B—C6—H6C109.5
C7—C1—C2110.56 (14)C1—C7—H7A109.5
N1—C1—C2107.56 (13)C1—C7—H7B109.5
C7—C1—C6109.16 (14)H7A—C7—H7B109.5
N1—C1—C6111.62 (14)C1—C7—H7C109.5
C2—C1—C6112.31 (14)H7A—C7—H7C109.5
C3—C2—C1113.80 (14)H7B—C7—H7C109.5
C3—C2—H2A108.8C5—C8—H8A109.5
C1—C2—H2A108.8C5—C8—H8B109.5
C3—C2—H2B108.8H8A—C8—H8B109.5
C1—C2—H2B108.8C5—C8—H8C109.5
H2A—C2—H2B107.7H8A—C8—H8C109.5
O1—C3—C2105.80 (14)H8B—C8—H8C109.5
O1—C3—C4110.67 (14)C5—C9—H9A109.5
C2—C3—C4110.33 (14)C5—C9—H9B109.5
O1—C3—H3110.0H9A—C9—H9B109.5
C2—C3—H3110.0C5—C9—H9C109.5
C4—C3—H3110.0H9A—C9—H9C109.5
C3—C4—C5114.51 (14)H9B—C9—H9C109.5
C3—C4—H4A108.6C11—C10—Cl2111.74 (11)
C5—C4—H4A108.6C11—C10—Cl1111.69 (11)
C3—C4—H4B108.6Cl2—C10—Cl1108.65 (9)
C5—C4—H4B108.6C11—C10—Cl3106.67 (11)
H4A—C4—H4B107.6Cl2—C10—Cl3109.25 (9)
N1—C5—C8110.77 (14)Cl1—C10—Cl3108.77 (9)
N1—C5—C9105.97 (14)O2—C11—O3128.65 (16)
C8—C5—C9108.77 (14)O2—C11—C10116.15 (14)
N1—C5—C4107.55 (13)O3—C11—C10115.14 (14)
C5—N1—C1—C7168.77 (14)C1—N1—C5—C9−167.95 (14)
C5—N1—C1—C250.78 (19)C1—N1—C5—C4−49.69 (19)
C5—N1—C1—C6−72.85 (19)C3—C4—C5—N150.25 (19)
C7—C1—C2—C3−166.72 (14)C3—C4—C5—C8−72.32 (19)
N1—C1—C2—C3−52.12 (18)C3—C4—C5—C9165.51 (16)
C6—C1—C2—C371.08 (18)Cl2—C10—C11—O2−29.86 (19)
C1—C2—C3—O1176.40 (14)Cl1—C10—C11—O2−151.81 (14)
C1—C2—C3—C456.67 (19)Cl3—C10—C11—O289.47 (17)
O1—C3—C4—C5−172.59 (14)Cl2—C10—C11—O3152.80 (13)
C2—C3—C4—C5−55.84 (19)Cl1—C10—C11—O330.85 (18)
C1—N1—C5—C874.25 (18)Cl3—C10—C11—O3−87.87 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.89 (3)1.99 (3)2.8095 (18)152 (3)
O1—H1···Cl1i0.89 (3)2.92 (3)3.6201 (16)136 (2)
N1—H1A···O3ii0.95 (3)1.87 (3)2.8085 (19)170 (2)
N1—H1B···O2iii0.94 (2)1.87 (2)2.796 (2)165.1 (19)
N1—H1B···Cl2iii0.94 (2)2.94 (2)3.5647 (16)124.5 (16)

Symmetry codes: (i) x+1, y, z; (ii) −x, y+1/2, −z+1; (iii) −x+1, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2380).

References

  • Borzatta, V. & Carrozza, P. (1991). European Patent EP 0 462 069.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography