PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): o552.
Published online 2008 February 6. doi:  10.1107/S1600536808003280
PMCID: PMC2960746

3-[(E)-4-Methoxy­benzyl­idene]-1-methyl­piperidin-4-one

Abstract

The piperidone ring of the title compound, C14H17NO2, adopts a half-chair conformation. The crystal packing is stabilized by inter­molecular C—H(...)O inter­actions, which generate a C(8) chain running along the b axis.

Related literature

For related literature, see: Abignente & Biniecka-Picazio (1977 [triangle]); Angle & Breitenbucher (1995 [triangle]); Cremer & Pople (1975 [triangle]); Nardelli (1983 [triangle]); Wang & Wuorola (1992 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o552-scheme1.jpg

Experimental

Crystal data

  • C14H17NO2
  • M r = 231.29
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o552-efi1.jpg
  • a = 7.5212 (7) Å
  • b = 12.4097 (11) Å
  • c = 13.5062 (12) Å
  • V = 1260.6 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 (2) K
  • 0.24 × 0.22 × 0.21 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 10874 measured reflections
  • 1729 independent reflections
  • 1577 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.128
  • S = 1.11
  • 1729 reflections
  • 156 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808003280/bt2673sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003280/bt2673Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

DG thanks the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship. Financial support from the University Grants Commission (UGC–SAP) and the Department of Science & Technology (DST–FIST), Government of India, is acknowledged by DV for providing facilities to the department.

supplementary crystallographic information

Comment

Substituted 4-piperidones are important synthetic intermediates for the preparation of various pharmaceuticals (Wang & Wuorola, 1992). 4-Piperidones are also widely prevalent in natural products such as alkaloids (Angle & Breitenbucher, 1995). Derivatives of 4-piperidones have been found to exhibit spasmolytic activities (Abignente & Biniecka-Picazio, 1977). Since, the title compound is pharmacologically important, the crystal structure of the title compound has been determined by X-ray diffraction.

The sum of the bond angles around N1 [331.4 (6)°] indicate the sp3 hybridization. The torsion angles around C10—C11—O2—C14 [179.4 (2)°] and C12—C11—O2—C14 [-0.8 (3)°] indicate that the methoxy group is planar with the phenyl ring.

The piperidone ring adopts a half-chair conformation with the puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) being q2 = 0.366 (3) Å, q3 = 0.361 (3) Å, QT = 0.515 (3)Å and θ = 45.4 (3)°. The molecular conformation is stabilized by weak C—H···O intramolecular interactions. The crystal packing is stabilized by C—H···O intermolecular interactions generating a chain C(8) running along b axis.

Experimental

A mixture of 1-methyl-4-piperidone (1 mmol) and pyrrolidine (1.2 mmol) was taken in a glass tube, mixed well and kept aside for 5 min at ambient temperature. To this mixture, 4-methoxybenzaldehyde (1 mmol) was added, mixed thoroughly and the tube containing the mixture was partially immersed in a silica bath placed in a microwave oven and irradiated at 4 power level for 8 minutes. The progress of the reaction was monitored after every 1 min of irradiation by TLC with petroleum ether:ethyl acetate (1:2 v/v mixture) as eluent. After each irradiation, the reaction mixture was cooled to room temperature and mixed well. The maximum temperature of the silica bath, measured immediately after each irradiation was over by stirring the silica bath with the thermometer, was found to be 65 °C. After completion of the reaction as evident from the TLC, the product was purified by column chromatography using petroleum ether:ethyl acetate (7:2 v/v) mixture and crystallized from ethyl acetate.

Refinement

In the absence of anomalous scatterers Friedel pairs had been merged prior to refinement. All H-atoms were refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic C atoms, 0.97 Å, Uiso = 1.2Ueq (C) for methylene and 0.96 Å, Uiso = 1.5Ueq (C) for methyl groups.

Figures

Fig. 1.
The molecular structure of title compound, showing 30% probability displacement ellipsoids.
Fig. 2.
The molecular packing of the title compound, viewed down the a axis.

Crystal data

C14H17NO2F000 = 496
Mr = 231.29Dx = 1.219 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 861 reflections
a = 7.5212 (7) Åθ = 2.2–25.0º
b = 12.4097 (11) ŵ = 0.08 mm1
c = 13.5062 (12) ÅT = 293 (2) K
V = 1260.6 (2) Å3Block, pale yellow
Z = 40.24 × 0.22 × 0.21 mm

Data collection

Bruker SMART CCD area-detector diffractometer1577 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Monochromator: graphiteθmax = 28.1º
T = 293(2) Kθmin = 2.2º
ω scansh = −9→9
Absorption correction: nonek = −16→16
10874 measured reflectionsl = −17→17
1729 independent reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045  w = 1/[σ2(Fo2) + (0.083P)2 + 0.0611P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.128(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.28 e Å3
1729 reflectionsΔρmin = −0.13 e Å3
156 parametersExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure:
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.1137 (5)0.0252 (2)1.28219 (18)0.0864 (8)
H1A−0.00390.04331.31440.130*
H1B−0.1816−0.02181.32410.130*
H1C−0.18030.08981.26970.130*
C20.0338 (4)−0.1243 (2)1.20225 (17)0.0802 (7)
H2A−0.0149−0.16851.25490.096*
H2B0.1533−0.10311.22100.096*
C30.0400 (5)−0.18853 (18)1.1072 (2)0.0845 (7)
H3A0.1321−0.24291.11310.101*
H3B−0.0725−0.22571.09920.101*
C40.0749 (4)−0.12308 (16)1.01586 (16)0.0697 (6)
C50.0494 (3)−0.00418 (14)1.02172 (14)0.0548 (5)
C60.0120 (3)0.04524 (15)1.12177 (14)0.0558 (4)
H6A0.12320.06851.15120.067*
H6B−0.06220.10851.11300.067*
C70.0594 (3)0.05043 (14)0.93680 (15)0.0560 (5)
H70.07900.00900.88050.067*
C80.0436 (3)0.16662 (14)0.91996 (13)0.0510 (4)
C9−0.0213 (3)0.20203 (14)0.82852 (13)0.0562 (5)
H9−0.05060.15150.78040.067*
C10−0.0427 (3)0.30978 (15)0.80817 (12)0.0576 (5)
H10−0.08790.33140.74720.069*
C110.0031 (2)0.38597 (14)0.87840 (13)0.0511 (4)
C120.0740 (3)0.35353 (14)0.96828 (14)0.0585 (5)
H120.10790.40451.01510.070*
C130.0938 (3)0.24434 (17)0.98781 (15)0.0581 (5)
H130.14220.22291.04810.070*
C140.0194 (4)0.57070 (15)0.92477 (17)0.0667 (6)
H14A−0.04490.55700.98490.100*
H14B−0.01160.64070.89990.100*
H14C0.14480.56810.93790.100*
N1−0.0762 (3)−0.02883 (15)1.18885 (13)0.0656 (5)
O10.1230 (4)−0.16737 (12)0.94008 (14)0.0993 (7)
O2−0.0251 (2)0.49113 (10)0.85323 (10)0.0627 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.105 (2)0.0972 (18)0.0569 (12)−0.0171 (16)0.0036 (13)0.0011 (12)
C20.1040 (18)0.0634 (11)0.0731 (13)−0.0072 (14)−0.0128 (14)0.0222 (11)
C30.1134 (19)0.0459 (9)0.0942 (16)−0.0027 (13)−0.0080 (17)0.0165 (11)
C40.0965 (15)0.0404 (8)0.0723 (12)0.0031 (10)−0.0171 (13)−0.0023 (9)
C50.0662 (11)0.0391 (7)0.0590 (10)0.0011 (8)−0.0092 (9)−0.0002 (7)
C60.0660 (11)0.0464 (8)0.0551 (9)−0.0030 (8)−0.0093 (9)0.0009 (7)
C70.0701 (11)0.0430 (8)0.0551 (9)0.0031 (8)−0.0019 (9)−0.0053 (7)
C80.0603 (10)0.0433 (8)0.0493 (8)0.0005 (8)0.0021 (8)0.0001 (6)
C90.0787 (12)0.0476 (8)0.0423 (7)−0.0009 (9)0.0058 (9)−0.0040 (6)
C100.0793 (12)0.0538 (9)0.0397 (7)0.0015 (10)0.0022 (9)0.0058 (7)
C110.0602 (9)0.0421 (7)0.0510 (8)−0.0017 (8)0.0055 (8)0.0055 (7)
C120.0744 (11)0.0443 (9)0.0568 (10)−0.0085 (9)−0.0103 (9)−0.0004 (7)
C130.0713 (11)0.0488 (9)0.0544 (9)−0.0029 (9)−0.0150 (9)0.0057 (7)
C140.0878 (14)0.0414 (8)0.0708 (12)−0.0001 (10)0.0100 (12)−0.0005 (8)
N10.0784 (11)0.0618 (9)0.0565 (8)−0.0120 (9)−0.0084 (9)0.0061 (7)
O10.169 (2)0.0465 (7)0.0828 (11)0.0139 (12)−0.0067 (13)−0.0083 (8)
O20.0866 (10)0.0415 (6)0.0600 (7)−0.0016 (7)−0.0008 (8)0.0077 (5)

Geometric parameters (Å, °)

C1—N11.456 (3)C7—C81.465 (2)
C1—H1A0.9600C7—H70.9300
C1—H1B0.9600C8—C131.383 (3)
C1—H1C0.9600C8—C91.399 (3)
C2—N11.457 (3)C9—C101.374 (3)
C2—C31.511 (4)C9—H90.9300
C2—H2A0.9700C10—C111.383 (3)
C2—H2B0.9700C10—H100.9300
C3—C41.500 (3)C11—O21.365 (2)
C3—H3A0.9700C11—C121.385 (3)
C3—H3B0.9700C12—C131.389 (3)
C4—O11.217 (3)C12—H120.9300
C4—C51.490 (3)C13—H130.9300
C5—C71.334 (3)C14—O21.421 (3)
C5—C61.510 (3)C14—H14A0.9600
C6—N11.451 (3)C14—H14B0.9600
C6—H6A0.9700C14—H14C0.9600
C6—H6B0.9700
N1—C1—H1A109.5C5—C7—H7115.5
N1—C1—H1B109.5C8—C7—H7115.5
H1A—C1—H1B109.5C13—C8—C9117.47 (16)
N1—C1—H1C109.5C13—C8—C7124.17 (18)
H1A—C1—H1C109.5C9—C8—C7118.33 (16)
H1B—C1—H1C109.5C10—C9—C8121.53 (17)
N1—C2—C3109.93 (19)C10—C9—H9119.2
N1—C2—H2A109.7C8—C9—H9119.2
C3—C2—H2A109.7C9—C10—C11119.92 (17)
N1—C2—H2B109.7C9—C10—H10120.0
C3—C2—H2B109.7C11—C10—H10120.0
H2A—C2—H2B108.2O2—C11—C12123.75 (16)
C4—C3—C2114.74 (18)O2—C11—C10116.37 (16)
C4—C3—H3A108.6C12—C11—C10119.88 (16)
C2—C3—H3A108.6C11—C12—C13119.43 (17)
C4—C3—H3B108.6C11—C12—H12120.3
C2—C3—H3B108.6C13—C12—H12120.3
H3A—C3—H3B107.6C8—C13—C12121.69 (18)
O1—C4—C5122.0 (2)C8—C13—H13119.2
O1—C4—C3119.95 (19)C12—C13—H13119.2
C5—C4—C3118.0 (2)O2—C14—H14A109.5
C7—C5—C4116.75 (17)O2—C14—H14B109.5
C7—C5—C6124.98 (16)H14A—C14—H14B109.5
C4—C5—C6118.27 (16)O2—C14—H14C109.5
N1—C6—C5112.74 (16)H14A—C14—H14C109.5
N1—C6—H6A109.0H14B—C14—H14C109.5
C5—C6—H6A109.0C6—N1—C1109.72 (18)
N1—C6—H6B109.0C6—N1—C2109.5 (2)
C5—C6—H6B109.0C1—N1—C2112.18 (19)
H6A—C6—H6B107.8C11—O2—C14117.27 (15)
C5—C7—C8128.98 (17)
N1—C2—C3—C446.7 (3)C8—C9—C10—C111.1 (3)
C2—C3—C4—O1163.0 (3)C9—C10—C11—O2−178.8 (2)
C2—C3—C4—C5−16.8 (4)C9—C10—C11—C121.3 (3)
O1—C4—C5—C78.4 (4)O2—C11—C12—C13178.5 (2)
C3—C4—C5—C7−171.8 (2)C10—C11—C12—C13−1.7 (3)
O1—C4—C5—C6−172.5 (3)C9—C8—C13—C122.7 (3)
C3—C4—C5—C67.3 (3)C7—C8—C13—C12−179.2 (2)
C7—C5—C6—N1151.3 (2)C11—C12—C13—C8−0.4 (3)
C4—C5—C6—N1−27.8 (3)C5—C6—N1—C1−178.0 (2)
C4—C5—C7—C8−178.6 (2)C5—C6—N1—C258.5 (2)
C6—C5—C7—C82.3 (4)C3—C2—N1—C6−68.5 (3)
C5—C7—C8—C1330.6 (4)C3—C2—N1—C1169.4 (2)
C5—C7—C8—C9−151.3 (2)C12—C11—O2—C14−0.8 (3)
C13—C8—C9—C10−3.1 (3)C10—C11—O2—C14179.37 (19)
C7—C8—C9—C10178.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.932.543.419 (3)157

Symmetry codes: (i) −x, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2673).

References

  • Abignente, E. & Biniecka-Picazio, M. (1977). Acta Pol. Pharm.34, 241–242. [PubMed]
  • Angle, S. R. & Breitenbucher, J. G. (1995). In Studies in Natural Products Chemistry; Stereoselective Synthesis, edited by Atta-ur-Rahman, Vol. 16, Part J, pp 453–502. New York: Elsevier.
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Wang, C.-L. & Wuorola, M. A. (1992). Org. Prep. Proced. Int.24, 585–621.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography