PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): o590.
Published online 2008 February 15. doi:  10.1107/S1600536808004121
PMCID: PMC2960745

(3R*,4R*,5S*)-4-(4-Methyl­phen­yl)-2,3-diphenyl-7-[(R*)-1-phenyl­ethyl]-1-oxa-2,7-diaza­spiro­[4.5]decan-10-one oxime

Abstract

In the title compound, C34H35N3O2, the polysubstituted piperidine ring adopts a chair conformation and the isoxazolidine ring is in an envelope form. The mol­ecules are linked into a chain along the b axis by O—H(...)N, C—H(...)O and C—H(...)N inter­actions. The chains are cross-linked via weak C—H(...)π inter­actions.

Related literature

For related literature, see: Ali et al. (1988 [triangle]); Annuziata et al. (1987 [triangle]); Colombi et al. (1978 [triangle]); Gothelf & Jorgensen (2000 [triangle]); Goti et al. (1997 [triangle]); Hossain et al. (1993 [triangle]); Kumar et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o590-scheme1.jpg

Experimental

Crystal data

  • C34H35N3O2
  • M r = 517.65
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o590-efi1.jpg
  • a = 10.448 (7) Å
  • b = 10.588 (9) Å
  • c = 26.490 (16) Å
  • V = 2930 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 293 (2) K
  • 0.18 × 0.16 × 0.11 mm

Data collection

  • Nonius MACH-3 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.986, T max = 0.991
  • 3068 measured reflections
  • 2933 independent reflections
  • 1037 reflections with I > 2σ(I)
  • R int = 0.049
  • 2 standard reflections frequency: 60 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.119
  • S = 0.95
  • 2933 reflections
  • 355 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808004121/ci2561sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004121/ci2561Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RSK thanks CSIR, New Delhi, for a Major Research Project.

supplementary crystallographic information

Comment

1,3-dipolar cycloaddition of nitrones with olefinic dipolarophiles proceeds through a concerted mechanism yielding highly substituted isoxazolidines with generation of as many as three new contiguous stereogenic centers in a single step (Gothelf & Jorgensen, 2000). Isoxazolidines are potential precursors for biologically important compounds such as amino sugars, alkaloids (Goti et al., 1997; Ali et al., 1988), β-lactams (Ali et al., 1988), and amino acids (Annuziata et al., 1987), and exhibit antibacterial and antifungal activities (Kumar et al., 2003). Among the dipoles, nitrones have been extensively used as they readily undergo both inter- and intra-molecular 1,3-dipolar cycloaddition with olefins. 1,3-dipolar cycloaddition of exocyclic olefins with nitrones result in highly substituted spiro-isoxazolidines (Hossain et al., 1993) and they have also been transformed into complex heterocycles (Colombi et al., 1978).

The molecular structure of the title compound is shown in Fig.1. The isoxazolidine ring has an envelope conformation, as indicated by the puckering parameters Q = 0.492 (6) Å and [var phi] = 34.1 (7)°. The piperidine ring adopts a chair conformation. The C31—C36, C81—C86 and C71—C76 phenyl rings form dihedral angles of 37.5 (3)°, 77.5 (3)° and 71.8 (2)°, respectively, with the O2/C5/C7/C8 plane. The C31—C36 and C71—C76 phenyl rings are oriented at angles of 74.1 (3)° and 70.9 (3)°, respectively, with respect to the C81—C86 phenyl ring. The C2—N1—C9—C91 and C6—N1—C9—C10 torsion angles are 175.9 (6) and 178.4 (5)°, respectively.

Intermolecular O—H···N and weak C—H···O and C—H···N interactions form a linear chain running parallel to the b axis (Table 1). The chains are cross-linked via weak C—H···π interactions involving the C31—C36 phenyl ring (centroid Cg1).

Experimental

4-(4-Methylphenyl)-2,3-diphenyl-7-[(R)-1-phenylethyl]-1-oxa-2,7-diazaspiro[4.5] decan-10-one (0.05 g, 0.01 mmol), hydroxylammonium chloride (0.010 g, 0.015 mmol) and sodium acetate (0.012 g, 0.015 mmol) in ethanol (3 ml) was refluxed for 30 min. After completion of the reaction, as evident from TLC the excess solvent was evaporated in vacuo and the residue was subjected to flash column chromatography on silica gel using petroleum ether-ethyl acetate (10:2) as eluent. The product was recrystallized from ethanol (yield 72%, m.p 418 K)

Refinement

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å, O—H = 0.82 Å and Uiso = 1.2Ueq(C) for CH2 and CH groups, and 1.5Ueq for CH3 and OH groups. In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and Friedel pairs were merged.

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C34H35N3O2F000 = 1104
Mr = 517.65Dx = 1.173 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 10.448 (7) Åθ = 2–25º
b = 10.588 (9) ŵ = 0.07 mm1
c = 26.490 (16) ÅT = 293 (2) K
V = 2930 (4) Å3Block, colourless
Z = 40.18 × 0.16 × 0.11 mm

Data collection

Nonius MACH-3 diffractometerRint = 0.049
Radiation source: fine-focus sealed tubeθmax = 25.0º
Monochromator: graphiteθmin = 2.1º
T = 293(2) Kh = 0→12
ω–2θ scansk = 0→12
Absorption correction: ψ scan(North et al., 1968)l = −1→31
Tmin = 0.986, Tmax = 0.9912 standard reflections
3068 measured reflections every 60 min
2933 independent reflections intensity decay: none
1037 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.119  w = 1/[σ2(Fo2) + (0.0339P)2] where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
2933 reflectionsΔρmax = 0.15 e Å3
355 parametersΔρmin = −0.17 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C20.1491 (7)0.2999 (7)0.2896 (2)0.057 (2)
H2A0.15020.35890.31760.068*
H2B0.17780.21850.30200.068*
C30.0135 (7)0.2879 (6)0.2695 (2)0.061 (2)
H3A−0.04210.25570.29590.073*
H3B−0.01780.37040.25940.073*
C40.0111 (6)0.2011 (7)0.2257 (2)0.0428 (19)
C50.1068 (6)0.2330 (6)0.1843 (2)0.0440 (19)
C60.2378 (6)0.2497 (7)0.2084 (2)0.0495 (19)
H6A0.26630.16910.22180.059*
H6B0.29850.27570.18270.059*
C70.1025 (6)0.1445 (6)0.1374 (2)0.0453 (19)
H70.03220.08490.14300.054*
C80.0593 (6)0.2344 (6)0.0951 (2)0.0459 (19)
H80.13480.27570.08060.055*
C90.3678 (7)0.3610 (7)0.2705 (3)0.059 (2)
H90.39490.28040.28520.070*
C100.3704 (8)0.4613 (7)0.3123 (2)0.092 (3)
H10A0.34000.54020.29900.138*
H10B0.45640.47140.32430.138*
H10C0.31630.43500.33960.138*
C31−0.0448 (7)0.4453 (7)0.0987 (3)0.049 (2)
C32−0.1389 (8)0.4467 (8)0.0614 (3)0.069 (2)
H32−0.17660.37120.05150.083*
C33−0.1768 (8)0.5572 (10)0.0391 (3)0.081 (3)
H33−0.23950.55540.01420.098*
C34−0.1238 (10)0.6699 (8)0.0530 (3)0.078 (3)
H34−0.15070.74510.03830.094*
C35−0.0303 (9)0.6693 (8)0.0890 (3)0.084 (3)
H350.00810.74520.09800.101*
C360.0098 (8)0.5574 (8)0.1127 (3)0.065 (2)
H360.07260.55950.13760.078*
C710.2166 (7)0.0680 (7)0.1229 (2)0.047 (2)
C720.3230 (7)0.1135 (7)0.0978 (3)0.057 (2)
H720.33070.19980.09210.068*
C730.4189 (8)0.0327 (7)0.0807 (3)0.065 (2)
H730.48840.06620.06330.078*
C740.4133 (9)−0.0953 (8)0.0889 (3)0.065 (2)
C750.3100 (9)−0.1418 (8)0.1145 (3)0.081 (3)
H750.3036−0.22810.12070.098*
C760.2152 (8)−0.0616 (8)0.1312 (3)0.067 (2)
H760.1467−0.09600.14890.081*
C770.5171 (7)−0.1818 (8)0.0674 (3)0.093 (3)
H77A0.5320−0.16080.03270.139*
H77B0.4897−0.26810.06990.139*
H77C0.5948−0.17070.08630.139*
C81−0.0138 (8)0.1710 (7)0.0537 (3)0.057 (2)
C820.0338 (8)0.1661 (7)0.0054 (3)0.079 (3)
H820.11120.2050−0.00220.094*
C83−0.0344 (13)0.1023 (11)−0.0326 (4)0.116 (5)
H83−0.00230.0992−0.06540.139*
C84−0.1453 (13)0.0462 (13)−0.0216 (6)0.136 (6)
H84−0.18770.0016−0.04680.163*
C85−0.1984 (11)0.0517 (11)0.0251 (5)0.120 (4)
H85−0.27800.01610.03160.144*
C86−0.1287 (10)0.1135 (8)0.0636 (3)0.088 (3)
H86−0.16130.11510.09620.105*
C910.4635 (7)0.3974 (8)0.2304 (3)0.056 (2)
C920.5805 (9)0.3409 (10)0.2280 (4)0.105 (4)
H920.59800.27310.24920.126*
C930.6745 (11)0.3822 (11)0.1947 (5)0.125 (5)
H930.75410.34300.19380.150*
C940.6480 (11)0.4818 (11)0.1631 (4)0.107 (4)
H940.71070.51170.14120.128*
C950.5312 (9)0.5363 (8)0.1637 (3)0.081 (3)
H950.51270.60160.14150.097*
C960.4391 (7)0.4953 (8)0.1974 (3)0.067 (2)
H960.35940.53430.19780.081*
N10.2373 (5)0.3445 (5)0.2497 (2)0.0447 (15)
N2−0.0569 (5)0.1010 (5)0.2211 (2)0.0442 (15)
N3−0.0164 (5)0.3297 (5)0.12360 (19)0.0462 (15)
O1−0.1378 (5)0.0870 (4)0.26317 (17)0.0568 (14)
H1−0.17260.01770.26210.085*
O20.0736 (4)0.3573 (4)0.16451 (15)0.0469 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C20.077 (6)0.051 (5)0.042 (4)−0.012 (5)0.010 (5)−0.003 (4)
C30.074 (6)0.051 (5)0.057 (5)−0.007 (5)0.021 (5)−0.007 (4)
C40.041 (5)0.046 (4)0.041 (4)0.004 (4)0.013 (4)−0.001 (4)
C50.049 (5)0.042 (5)0.041 (4)−0.001 (4)0.002 (4)−0.001 (4)
C60.058 (5)0.049 (4)0.042 (4)0.000 (4)0.002 (4)0.004 (4)
C70.058 (5)0.038 (4)0.040 (4)−0.008 (4)0.007 (4)−0.003 (4)
C80.042 (5)0.053 (5)0.043 (4)0.000 (4)0.007 (4)−0.011 (4)
C90.056 (6)0.066 (6)0.053 (5)0.005 (5)−0.013 (5)0.009 (5)
C100.106 (7)0.120 (7)0.050 (5)−0.019 (6)−0.019 (5)−0.026 (6)
C310.050 (5)0.049 (5)0.047 (5)0.000 (5)0.012 (4)−0.011 (5)
C320.055 (6)0.073 (7)0.080 (6)0.004 (5)−0.003 (5)0.002 (6)
C330.085 (7)0.093 (7)0.066 (6)0.027 (7)−0.008 (5)0.014 (7)
C340.116 (9)0.058 (7)0.061 (6)0.011 (6)0.012 (6)−0.001 (5)
C350.114 (8)0.071 (7)0.068 (6)−0.005 (6)−0.020 (6)0.006 (5)
C360.087 (7)0.053 (5)0.057 (5)0.004 (6)−0.012 (5)0.011 (5)
C710.064 (6)0.031 (5)0.047 (5)−0.004 (5)0.011 (4)−0.003 (4)
C720.061 (5)0.051 (5)0.058 (5)0.005 (5)0.008 (5)0.006 (5)
C730.063 (6)0.068 (6)0.065 (5)0.010 (5)0.015 (5)0.014 (5)
C740.081 (7)0.064 (6)0.050 (5)0.031 (6)−0.002 (5)−0.006 (5)
C750.107 (8)0.049 (5)0.087 (7)0.016 (6)0.019 (6)0.002 (5)
C760.078 (6)0.065 (6)0.059 (6)−0.004 (6)0.012 (5)0.005 (5)
C770.100 (7)0.090 (7)0.088 (6)0.042 (6)0.008 (6)−0.017 (5)
C810.057 (6)0.061 (5)0.052 (5)0.012 (5)−0.002 (5)−0.011 (5)
C820.086 (6)0.089 (6)0.060 (5)0.029 (6)−0.011 (5)−0.021 (5)
C830.174 (13)0.117 (11)0.056 (6)0.065 (10)−0.037 (8)−0.044 (7)
C840.132 (14)0.090 (10)0.187 (15)0.019 (10)−0.070 (13)−0.049 (11)
C850.089 (9)0.085 (8)0.186 (13)0.013 (7)−0.012 (10)−0.017 (10)
C860.094 (8)0.076 (7)0.093 (8)−0.010 (6)−0.033 (7)−0.028 (6)
C910.037 (5)0.066 (6)0.064 (5)0.013 (5)−0.011 (4)−0.025 (5)
C920.062 (7)0.110 (8)0.144 (10)0.024 (7)−0.005 (7)−0.021 (8)
C930.056 (7)0.138 (12)0.181 (14)0.028 (9)0.000 (8)−0.036 (10)
C940.064 (8)0.135 (11)0.122 (10)−0.025 (8)0.048 (7)−0.063 (8)
C950.083 (7)0.090 (7)0.070 (5)−0.012 (7)0.021 (6)−0.016 (5)
C960.048 (5)0.073 (6)0.082 (6)0.001 (5)0.017 (5)0.003 (5)
N10.044 (4)0.043 (3)0.047 (3)−0.001 (3)−0.004 (3)−0.004 (3)
N20.044 (4)0.042 (3)0.046 (4)0.000 (3)0.011 (3)−0.002 (3)
N30.052 (4)0.042 (4)0.044 (3)−0.003 (3)0.000 (3)0.005 (3)
O10.062 (4)0.053 (4)0.056 (3)−0.015 (3)0.024 (3)−0.001 (3)
O20.052 (3)0.047 (3)0.042 (3)−0.001 (3)0.001 (3)0.002 (3)

Geometric parameters (Å, °)

C2—N11.480 (7)C71—C721.383 (8)
C2—C31.518 (8)C71—C761.390 (8)
C2—H2A0.97C72—C731.393 (9)
C2—H2B0.97C72—H720.93
C3—C41.482 (8)C73—C741.374 (9)
C3—H3A0.97C73—H730.93
C3—H3B0.97C74—C751.367 (10)
C4—N21.282 (7)C74—C771.529 (9)
C4—C51.520 (8)C75—C761.377 (10)
C5—O21.460 (7)C75—H750.93
C5—C61.521 (8)C76—H760.93
C5—C71.557 (8)C77—H77A0.96
C6—N11.485 (7)C77—H77B0.96
C6—H6A0.97C77—H77C0.96
C6—H6B0.97C81—C861.371 (10)
C7—C711.491 (8)C81—C821.374 (8)
C7—C81.537 (8)C82—C831.406 (11)
C7—H70.98C82—H820.93
C8—N31.487 (7)C83—C841.335 (14)
C8—C811.496 (9)C83—H830.93
C8—H80.98C84—C851.358 (15)
C9—N11.481 (7)C84—H840.93
C9—C911.508 (9)C85—C861.412 (12)
C9—C101.534 (8)C85—H850.93
C9—H90.98C86—H860.93
C10—H10A0.96C91—C921.362 (10)
C10—H10B0.96C91—C961.379 (9)
C10—H10C0.96C92—C931.391 (13)
C31—C361.368 (8)C92—H920.93
C31—C321.393 (9)C93—C941.374 (13)
C31—N31.422 (8)C93—H930.93
C32—C331.369 (10)C94—C951.350 (11)
C32—H320.93C94—H940.93
C33—C341.366 (10)C95—C961.382 (9)
C33—H330.93C95—H950.93
C34—C351.365 (10)C96—H960.93
C34—H340.93N2—O11.406 (6)
C35—C361.405 (10)N3—O21.464 (6)
C35—H350.93O1—H10.82
C36—H360.93
N1—C2—C3111.0 (5)C72—C71—C76115.4 (7)
N1—C2—H2A109.4C72—C71—C7125.2 (6)
C3—C2—H2A109.4C76—C71—C7119.2 (7)
N1—C2—H2B109.4C71—C72—C73121.4 (7)
C3—C2—H2B109.4C71—C72—H72119.3
H2A—C2—H2B108.0C73—C72—H72119.3
C4—C3—C2110.0 (6)C74—C73—C72121.6 (8)
C4—C3—H3A109.7C74—C73—H73119.2
C2—C3—H3A109.7C72—C73—H73119.2
C4—C3—H3B109.7C75—C74—C73117.9 (8)
C2—C3—H3B109.7C75—C74—C77121.9 (8)
H3A—C3—H3B108.2C73—C74—C77120.1 (9)
N2—C4—C3126.6 (6)C74—C75—C76120.3 (8)
N2—C4—C5118.7 (6)C74—C75—H75119.8
C3—C4—C5114.6 (6)C76—C75—H75119.8
O2—C5—C4107.6 (5)C75—C76—C71123.4 (8)
O2—C5—C6105.1 (5)C75—C76—H76118.3
C4—C5—C6108.4 (6)C71—C76—H76118.3
O2—C5—C7104.4 (5)C74—C77—H77A109.5
C4—C5—C7115.0 (5)C74—C77—H77B109.5
C6—C5—C7115.5 (6)H77A—C77—H77B109.5
N1—C6—C5112.6 (5)C74—C77—H77C109.5
N1—C6—H6A109.1H77A—C77—H77C109.5
C5—C6—H6A109.1H77B—C77—H77C109.5
N1—C6—H6B109.1C86—C81—C82118.5 (8)
C5—C6—H6B109.1C86—C81—C8120.5 (7)
H6A—C6—H6B107.8C82—C81—C8121.0 (8)
C71—C7—C8112.6 (5)C81—C82—C83120.1 (9)
C71—C7—C5120.6 (6)C81—C82—H82119.9
C8—C7—C5102.6 (5)C83—C82—H82119.9
C71—C7—H7106.7C84—C83—C82119.8 (12)
C8—C7—H7106.7C84—C83—H83120.1
C5—C7—H7106.7C82—C83—H83120.1
N3—C8—C81113.9 (6)C83—C84—C85122.4 (15)
N3—C8—C7101.9 (5)C83—C84—H84118.8
C81—C8—C7114.0 (5)C85—C84—H84118.8
N3—C8—H8108.9C84—C85—C86117.8 (13)
C81—C8—H8108.9C84—C85—H85121.1
C7—C8—H8108.9C86—C85—H85121.1
N1—C9—C91112.2 (6)C81—C86—C85121.3 (10)
N1—C9—C10111.5 (6)C81—C86—H86119.3
C91—C9—C10108.6 (6)C85—C86—H86119.3
N1—C9—H9108.1C92—C91—C96117.8 (9)
C91—C9—H9108.1C92—C91—C9121.1 (9)
C10—C9—H9108.1C96—C91—C9121.0 (7)
C9—C10—H10A109.5C91—C92—C93121.7 (11)
C9—C10—H10B109.5C91—C92—H92119.1
H10A—C10—H10B109.5C93—C92—H92119.1
C9—C10—H10C109.5C94—C93—C92119.0 (12)
H10A—C10—H10C109.5C94—C93—H93120.5
H10B—C10—H10C109.5C92—C93—H93120.5
C36—C31—C32118.5 (7)C95—C94—C93120.1 (12)
C36—C31—N3122.3 (7)C95—C94—H94119.9
C32—C31—N3119.1 (7)C93—C94—H94119.9
C33—C32—C31121.3 (8)C94—C95—C96120.3 (9)
C33—C32—H32119.4C94—C95—H95119.9
C31—C32—H32119.4C96—C95—H95119.9
C34—C33—C32120.9 (8)C91—C96—C95121.0 (8)
C34—C33—H33119.5C91—C96—H96119.5
C32—C33—H33119.5C95—C96—H96119.5
C35—C34—C33118.3 (9)C2—N1—C9110.2 (5)
C35—C34—H34120.9C2—N1—C6108.2 (5)
C33—C34—H34120.9C9—N1—C6110.5 (5)
C34—C35—C36122.0 (9)C4—N2—O1110.3 (5)
C34—C35—H35119.0C31—N3—O2107.8 (5)
C36—C35—H35119.0C31—N3—C8117.4 (5)
C31—C36—C35119.1 (7)O2—N3—C899.8 (5)
C31—C36—H36120.5N2—O1—H1109.5
C35—C36—H36120.5C5—O2—N3103.8 (4)
N1—C2—C3—C457.3 (8)N3—C8—C81—C82128.0 (7)
C2—C3—C4—N2123.3 (8)C7—C8—C81—C82−115.7 (8)
C2—C3—C4—C5−52.3 (7)C86—C81—C82—C83−0.5 (12)
N2—C4—C5—O2121.4 (6)C8—C81—C82—C83177.8 (7)
C3—C4—C5—O2−62.5 (7)C81—C82—C83—C84−0.2 (16)
N2—C4—C5—C6−125.4 (6)C82—C83—C84—C852(2)
C3—C4—C5—C650.6 (8)C83—C84—C85—C86−4(2)
N2—C4—C5—C75.6 (9)C82—C81—C86—C85−0.9 (13)
C3—C4—C5—C7−178.4 (5)C8—C81—C86—C85−179.2 (8)
O2—C5—C6—N160.0 (6)C84—C85—C86—C812.9 (16)
C4—C5—C6—N1−54.9 (7)N1—C9—C91—C92−135.1 (7)
C7—C5—C6—N1174.4 (5)C10—C9—C91—C92101.2 (9)
O2—C5—C7—C71123.6 (6)N1—C9—C91—C9649.8 (9)
C4—C5—C7—C71−118.7 (7)C10—C9—C91—C96−73.9 (8)
C6—C5—C7—C718.8 (9)C96—C91—C92—C932.0 (13)
O2—C5—C7—C8−2.5 (7)C9—C91—C92—C93−173.3 (9)
C4—C5—C7—C8115.2 (6)C91—C92—C93—C94−0.6 (17)
C6—C5—C7—C8−117.3 (6)C92—C93—C94—C95−1.6 (17)
C71—C7—C8—N3−159.2 (5)C93—C94—C95—C962.3 (15)
C5—C7—C8—N3−28.1 (6)C92—C91—C96—C95−1.2 (11)
C71—C7—C8—C8177.7 (7)C9—C91—C96—C95174.0 (7)
C5—C7—C8—C81−151.2 (6)C94—C95—C96—C91−0.9 (12)
C36—C31—C32—C33−0.2 (11)C3—C2—N1—C9177.5 (6)
N3—C31—C32—C33174.9 (7)C3—C2—N1—C6−61.6 (7)
C31—C32—C33—C34−0.3 (13)C91—C9—N1—C2175.9 (6)
C32—C33—C34—C351.2 (13)C10—C9—N1—C2−62.0 (7)
C33—C34—C35—C36−1.7 (13)C91—C9—N1—C656.3 (7)
C32—C31—C36—C35−0.3 (11)C10—C9—N1—C6178.4 (5)
N3—C31—C36—C35−175.1 (7)C5—C6—N1—C261.5 (7)
C34—C35—C36—C311.2 (13)C5—C6—N1—C9−177.8 (6)
C8—C7—C71—C7242.9 (9)C3—C4—N2—O13.8 (9)
C5—C7—C71—C72−78.4 (9)C5—C4—N2—O1179.3 (5)
C8—C7—C71—C76−131.6 (7)C36—C31—N3—O21.4 (8)
C5—C7—C71—C76107.0 (8)C32—C31—N3—O2−173.4 (6)
C76—C71—C72—C732.1 (11)C36—C31—N3—C8−110.1 (7)
C7—C71—C72—C73−172.6 (7)C32—C31—N3—C875.0 (8)
C71—C72—C73—C74−1.2 (12)C81—C8—N3—C31−72.3 (8)
C72—C73—C74—C750.1 (13)C7—C8—N3—C31164.5 (6)
C72—C73—C74—C77177.1 (6)C81—C8—N3—O2171.7 (5)
C73—C74—C75—C760.1 (13)C7—C8—N3—O248.5 (5)
C77—C74—C75—C76−176.8 (7)C4—C5—O2—N3−89.7 (5)
C74—C75—C76—C710.9 (13)C6—C5—O2—N3154.9 (4)
C72—C71—C76—C75−1.9 (12)C7—C5—O2—N333.0 (6)
C7—C71—C76—C75173.1 (7)C31—N3—O2—C5−174.5 (5)
N3—C8—C81—C86−53.8 (9)C8—N3—O2—C5−51.4 (5)
C7—C8—C81—C8662.6 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.982.791 (6)170
C3—H3B···N2ii0.972.613.353 (8)133
C96—H96···O1ii0.932.603.456 (9)154
C94—H94···Cg1iii0.932.803.721 (11)170

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2561).

References

  • Ali, Sk. A., Khan, J. H. & Wazeer, M. I. M. (1988). Tetrahedron, 44, 5911–5920.
  • Annuziata, R., Chinquini, M., Cozzi, F. & Raimondi, L. (1987). Tetrahedron, 43, 4051–4056.
  • Colombi, S., Vecchio, G., Gottarelli, G., Samori, B., Lanfredi, A. M. M. & Tiripicchio, A. (1978). Tetrahedron, 34, 2967–2976.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Version 5.0. Enraf–Nonius, Delft, The Netherlands.
  • Gothelf, K. V. & Jorgensen, K. A. (2000). Chem. Commun. pp. 1449–1458.
  • Goti, A., Fedi, V., Nanneli, L., De Sarlo, F. & Brandi, A. (1997). Synlett, pp. 577–579.
  • Harms, K. & Wocadlo, S. (1996). XCAD4 University of Marburg, Germany.
  • Hossain, N., Papchikhin, A., Plavec, J. & Chattopadhyaya, J. (1993). Tetrahedron, 49, 10133–10156.
  • Kumar, K. R. R., Mallesha, H. & Rangappa, K. S. (2003). Synth. Commun.33, 1545–1555.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography