PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1717–o1718.
Published online 2008 August 6. doi:  10.1107/S1600536808024999
PMCID: PMC2960743

2-Methyl-3-(4-nitro­phen­yl)acrylic acid

Abstract

The title compound, C10H9NO4, forms R 2 2(8) dimers due to inter­molecular O—H(...)O hydrogen bonding in the crystal structure. Two dimers are further linked to each other through two inter­molecular C—H(...)O hydrogen bonds, forming an R 3 3(7) ring motif. The nitro groups form an intra­molecular C—H(...)O hydrogen bond mimicking a five-membered ring. As a result of these hydrogen bonds, polymeric sheets are formed. The aromatic ring makes a dihedral angle of 42.84 (8)° with the carboxyl­ate group and an angle of 8.01 (14)° with the nitro group. There is a π-inter­action (N—O(...)π) between the nitro group and the aromatic ring, with a distance of 3.7572 (14) Å between the N atom and the centroid of the aromatic ring.

Related literature

For related literature, see: Bernstein et al. (1995 [triangle]); Fujii et al. (2002 [triangle]); Ma & Hayes (2004 [triangle]); Muhammad et al. (2007 [triangle], 2008a [triangle],b [triangle]); Muhammad, Ali, Tahir & Zia-ur-Rehman (2008 [triangle]); Muhammad, Tahir, Ali, Zia-ur-Rehman & Kashmiri (2008 [triangle]); Muhammad, Tahir, Zia-ur-Rehman & Ali (2008 [triangle]); Muhammad, Tahir, Zia-ur-Rehman, Ali & Shaheen, 2008 [triangle]); Niaz et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1717-scheme1.jpg

Experimental

Crystal data

  • C10H9NO4
  • M r = 207.18
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1717-efi1.jpg
  • a = 7.3878 (3) Å
  • b = 8.1050 (5) Å
  • c = 8.3402 (4) Å
  • α = 75.793 (2)°
  • β = 81.835 (3)°
  • γ = 87.686 (2)°
  • V = 479.21 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 296 (2) K
  • 0.25 × 0.20 × 0.18 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.970, T max = 0.981
  • 9039 measured reflections
  • 2518 independent reflections
  • 1926 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.134
  • S = 1.02
  • 2518 reflections
  • 140 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808024999/cs2087sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024999/cs2087Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore and for financial support to Niaz Muhammad for PhD studies under the Indigenous Scholarship Scheme.

supplementary crystallographic information

Comment

Cinnamic acid derivatives are widely used chemicals in a variety of fields (Ma et al., 2004). They have been applied as antibacterial agents for suppression of bacterial growth (Fujii et al., 2002). In wine, cinnamic acid and its derivatives join benzoic acid derivatives and flavonoids in creating pigments and tannin agents that give each vintage its characteristic bouquet and color. The title compound has been prepared in continuation of synthesizing various derivatives of cinamic acids (Niaz et al., 2008; Muhammad, Ali, Tahir & Zia-ur-Rehman, 2008; Muhammad, Tahir, Ali, Zia-ur-Rehman & Kashmiri, 2008) and their tin complexes (Muhammad et al., 2008a,b).

The crystal structures of 3-(4-isopropylphenyl)-2-methylacrylic acid (Muhammad, Tahir, Ali, Zia-ur-Rehman & Kashmiri, 2008), of 3-(4-clorophenyl)-2-methylacrylic acid (Muhammad, Tahir, Zia-ur-Rehman, Ali & Shaheen, 2008) and of 3-(4-bromophenyl)-2-methylacrylic acid (Muhammad et al., 2007) have been reported. The title compound differs from these compounds due to the nitro group at para position. In the crystal structure of the title compound, the exocyclic Csp2—Csp2 bonds are of 1.4770 (18) and 1.4880 (18) Å, the C==C is of 1.3376 (18) Å. The C—O bond length 1.2996 (16) Å is normal, much like the C=O bond length of 1.2300 (15) Å. The resonant N—O bond lengths are equal (1.2185 (16) and 1.2204 (17) Å). There is an interamolecular H-bond of C—H···O type (Table 1, Fig 1). Centrosymmetric R22(8) dimers (Bernstein et al. 1995) are formed due to the intermolecular O1—H1···O2i [symmetry code: i = -x, -y, -z + 1] hydrogen bonding. Two adjacent dimers are linked to each other through two intermolecular H-bonds of C—H···O type forming an R33(7) motif (Bernstein et al. 1995). The group of two dimers are linked to each other by intermolcular H-bonding (Table 1, Fig 2). There exist an N1—O4···Cgii [symmetry code: ii = -x + 1, -y + 2, -z] interaction with a distance of 3.7572 (14) Å between the N-atom and the centroid of the (C4—C9) aromatic ring. The aromatic ring makes a dihedral angle of 42.84 (8)° with with the carboxylate (O1/C1/O2) moiety and 8.01 (14)° with the (N1/O3/O4) nitro group. Due to the intermolecular H-bonding polymeric sheets are formed.

Experimental

The title compound was prepared according to a reported procedure (Muhammad et al., 2007). A mixture of 4-nitrobenzaldehyde (1.51 g, 10 mmol), methylmalonic acid (2.36 g, 20 mmol) and piperidine (1.98 ml, 20 mmol) in a pyridine (12.5 ml) solution was heated on a steam-bath for 24 h. The reaction mixture was cooled and added to a mixture of 25 ml of concentrated HCl and 50 g of ice. The precipitate formed in the acidified mixture was filtered off and washed with ice-cold water. The product was recrystallized from ethanol. The yield was 79%.

Refinement

The coordinates of H-atom attached with O1 were refined. The H-atoms attached with C-atoms were positioned geometrically, C—H = 0.93, and 0.96 Å for aromatic and methyl H, and constrained to ride on their parent atoms. The H-atoms were treated as isotropic with Uiso(H) = xUeq(C,O), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1.
ORTEP drawing of the title compound, C11H12O2 with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The intramolecular H-bonds are shown by dotted lines.
Fig. 2.
The packing figure (PLATON: Spek, 2003) which shows the dimeric nature of the compound and the interlinkages of the dimers.

Crystal data

C10H9NO4Z = 2
Mr = 207.18F000 = 216
Triclinic, P1Dx = 1.436 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.3878 (3) ÅCell parameters from 2518 reflections
b = 8.1050 (5) Åθ = 2.5–29.1º
c = 8.3402 (4) ŵ = 0.11 mm1
α = 75.793 (2)ºT = 296 (2) K
β = 81.835 (3)ºPrismatic, colourless
γ = 87.686 (2)º0.25 × 0.20 × 0.18 mm
V = 479.21 (4) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer2518 independent reflections
Radiation source: fine-focus sealed tube1926 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
Detector resolution: 7.4 pixels mm-1θmax = 29.1º
T = 296(2) Kθmin = 2.5º
ω scansh = −10→9
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −11→9
Tmin = 0.970, Tmax = 0.981l = −11→11
9039 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134  w = 1/[σ2(Fo2) + (0.0713P)2 + 0.0915P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2518 reflectionsΔρmax = 0.24 e Å3
140 parametersΔρmin = −0.21 e Å3
Primary atom site location: structure-invariant direct methodsExtinction coefficient: ?

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.04661 (16)0.13519 (13)0.29456 (12)0.0547 (4)
O20.09796 (15)0.16087 (12)0.54300 (12)0.0526 (3)
O30.52309 (18)1.11600 (15)−0.36244 (14)0.0661 (4)
O40.35761 (19)1.23296 (13)−0.18699 (15)0.0648 (4)
N10.41247 (18)1.10856 (14)−0.23745 (14)0.0466 (4)
C10.10453 (16)0.21896 (15)0.39150 (15)0.0357 (3)
C20.17797 (17)0.39231 (15)0.31101 (16)0.0362 (3)
C30.17195 (18)0.45348 (15)0.14759 (16)0.0378 (3)
C40.22936 (17)0.62471 (15)0.04743 (15)0.0361 (3)
C50.3308 (2)0.64219 (16)−0.11015 (16)0.0424 (4)
C60.39099 (19)0.80039 (17)−0.20464 (16)0.0425 (4)
C70.34487 (18)0.94026 (15)−0.14089 (15)0.0375 (4)
C80.2375 (2)0.92912 (16)0.01030 (17)0.0432 (4)
C90.1804 (2)0.76957 (16)0.10462 (16)0.0430 (4)
C100.2580 (2)0.47901 (17)0.42356 (17)0.0480 (4)
H1−0.005 (3)0.032 (3)0.355 (2)0.0656*
H30.127270.381140.091570.0454*
H50.358210.54652−0.152080.0508*
H60.460890.81202−0.308680.0510*
H80.204021.026240.048210.0518*
H90.108440.759350.207500.0516*
H10A0.336670.401040.488360.0719*
H10B0.161260.515740.496950.0719*
H10C0.327230.575880.357570.0719*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0855 (8)0.0371 (5)0.0397 (5)−0.0259 (5)−0.0071 (5)−0.0026 (4)
O20.0801 (7)0.0381 (5)0.0357 (5)−0.0229 (5)−0.0058 (5)0.0008 (4)
O30.0862 (8)0.0524 (7)0.0487 (6)−0.0249 (6)0.0068 (6)0.0033 (5)
O40.1010 (9)0.0290 (5)0.0614 (7)−0.0085 (5)−0.0120 (6)−0.0036 (5)
N10.0638 (7)0.0340 (6)0.0385 (6)−0.0119 (5)−0.0133 (5)0.0030 (5)
C10.0399 (6)0.0288 (6)0.0353 (6)−0.0057 (5)−0.0021 (5)−0.0028 (4)
C20.0379 (6)0.0278 (5)0.0392 (6)−0.0052 (5)−0.0024 (5)−0.0019 (5)
C30.0443 (6)0.0284 (6)0.0380 (6)−0.0068 (5)−0.0037 (5)−0.0029 (5)
C40.0416 (6)0.0294 (6)0.0342 (6)−0.0041 (5)−0.0064 (5)−0.0004 (4)
C50.0569 (8)0.0300 (6)0.0375 (6)−0.0005 (5)−0.0009 (5)−0.0062 (5)
C60.0521 (7)0.0360 (6)0.0338 (6)−0.0020 (5)0.0023 (5)−0.0023 (5)
C70.0468 (7)0.0281 (6)0.0343 (6)−0.0062 (5)−0.0093 (5)0.0017 (5)
C80.0607 (8)0.0292 (6)0.0380 (6)0.0016 (5)−0.0052 (6)−0.0062 (5)
C90.0554 (8)0.0348 (6)0.0334 (6)−0.0009 (5)0.0030 (5)−0.0029 (5)
C100.0626 (8)0.0353 (7)0.0437 (7)−0.0160 (6)−0.0124 (6)0.0001 (5)

Geometric parameters (Å, °)

O1—C11.2996 (16)C5—C61.3832 (19)
O2—C11.2300 (15)C6—C71.3774 (19)
O3—N11.2204 (17)C7—C81.3759 (19)
O4—N11.2185 (16)C8—C91.3855 (19)
O1—H10.93 (2)C3—H30.9300
N1—C71.4698 (17)C5—H50.9300
C1—C21.4880 (18)C6—H60.9300
C2—C31.3376 (18)C8—H80.9300
C2—C101.4965 (19)C9—H90.9300
C3—C41.4770 (18)C10—H10A0.9600
C4—C91.3887 (18)C10—H10B0.9600
C4—C51.3951 (18)C10—H10C0.9600
O1···C8i3.3471 (17)C4···H10C2.7200
O1···C6ii3.4128 (19)C4···H3ii3.0300
O1···O2iii2.6333 (15)C9···H10C2.6400
O2···O1iii2.6333 (15)C10···H92.8300
O2···C1iii3.3657 (16)C10···H10Bv3.0700
O2···N1iv3.1112 (17)H1···O1iii2.882 (17)
O1···H1iii2.882 (17)H1···O2iii1.71 (2)
O1···H32.3100H1···C1iii2.59 (2)
O1···H8i2.5500H1···H1iii2.36 (2)
O2···H10B2.8600H3···O12.3100
O2···H10A2.5900H3···H52.5900
O2···H1iii1.71 (2)H3···C4ii3.0300
O2···H9v2.6000H5···O4i2.6300
O3···H62.4400H5···H32.5900
O3···H10Avi2.7600H6···O32.4400
O3···H6vii2.6500H6···O3vii2.6500
O3···H10Cviii2.7800H6···C2x3.0800
O4···H5ix2.6300H8···O1ix2.5500
O4···H82.4200H8···O42.4200
O4···H10Avi2.7400H9···C22.9300
O4···H10Cviii2.8500H9···C102.8300
N1···O2vi3.1112 (17)H9···H10C2.4200
N1···C8viii3.378 (2)H9···O2v2.6000
C1···O2iii3.3657 (16)H10A···O22.5900
C2···C6x3.5837 (19)H10A···O3iv2.7600
C6···O1ii3.4128 (19)H10A···O4iv2.7400
C6···C2x3.5837 (19)H10B···O22.8600
C8···N1viii3.378 (2)H10B···C1v3.0800
C8···O1ix3.3471 (17)H10B···C2v2.9500
C9···C103.1937 (19)H10B···C10v3.0700
C10···C93.1937 (19)H10B···H10Bv2.4000
C1···H10Bv3.0800H10C···C42.7200
C1···H1iii2.59 (2)H10C···C92.6400
C2···H92.9300H10C···H92.4200
C2···H10Bv2.9500H10C···O3viii2.7800
C2···H6x3.0800H10C···O4viii2.8500
C1—O1—H1111.6 (12)C7—C8—C9118.33 (12)
O3—N1—O4123.45 (13)C4—C9—C8120.81 (12)
O3—N1—C7118.21 (12)C2—C3—H3117.00
O4—N1—C7118.33 (12)C4—C3—H3117.00
O1—C1—O2122.55 (12)C4—C5—H5120.00
O1—C1—C2116.77 (11)C6—C5—H5120.00
O2—C1—C2120.68 (11)C5—C6—H6121.00
C1—C2—C10115.28 (11)C7—C6—H6121.00
C3—C2—C10126.40 (12)C7—C8—H8121.00
C1—C2—C3118.29 (11)C9—C8—H8121.00
C2—C3—C4126.35 (12)C4—C9—H9120.00
C3—C4—C9121.47 (11)C8—C9—H9120.00
C5—C4—C9119.09 (12)C2—C10—H10A109.00
C3—C4—C5119.41 (11)C2—C10—H10B109.00
C4—C5—C6120.66 (12)C2—C10—H10C109.00
C5—C6—C7118.38 (12)H10A—C10—H10B109.00
N1—C7—C6119.04 (11)H10A—C10—H10C110.00
N1—C7—C8118.35 (11)H10B—C10—H10C109.00
C6—C7—C8122.61 (12)
O3—N1—C7—C6−7.7 (2)C2—C3—C4—C9−44.9 (2)
O3—N1—C7—C8172.34 (13)C3—C4—C5—C6−178.09 (13)
O4—N1—C7—C6173.58 (14)C9—C4—C5—C63.7 (2)
O4—N1—C7—C8−6.4 (2)C3—C4—C9—C8179.06 (13)
O1—C1—C2—C33.07 (18)C5—C4—C9—C8−2.7 (2)
O1—C1—C2—C10−174.99 (12)C4—C5—C6—C7−1.4 (2)
O2—C1—C2—C3−176.04 (13)C5—C6—C7—N1178.15 (13)
O2—C1—C2—C105.90 (18)C5—C6—C7—C8−1.9 (2)
C1—C2—C3—C4176.84 (12)N1—C7—C8—C9−177.24 (13)
C10—C2—C3—C4−5.3 (2)C6—C7—C8—C92.8 (2)
C2—C3—C4—C5136.88 (15)C7—C8—C9—C4−0.4 (2)

Symmetry codes: (i) x, y−1, z; (ii) −x, −y+1, −z; (iii) −x, −y, −z+1; (iv) x, y−1, z+1; (v) −x, −y+1, −z+1; (vi) x, y+1, z−1; (vii) −x+1, −y+2, −z−1; (viii) −x+1, −y+2, −z; (ix) x, y+1, z; (x) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O2iii0.93 (2)1.71 (2)2.6333 (15)177 (2)
C3—H3···O10.932.312.7080 (17)105
C8—H8···O1ix0.932.553.3471 (17)144
C9—H9···O2v0.932.603.4912 (17)161

Symmetry codes: (iii) −x, −y, −z+1; (ix) x, y+1, z; (v) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2087).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Fujii, T., Shimaya, C., Yano, A., Terado, K., Sugino, H. & Fukuda, H. (2002). Biotechnol. Lett.24, 151–154.
  • Ma, G. & Hayes, S. E. J. (2004). Labelled Compd. Radiopharm.47, 895–901.
  • Muhammad, N., Ali, S., Tahir, M. N. & Zia-ur-Rehman (2008). Acta Cryst. E64, o1373. [PMC free article] [PubMed]
  • Muhammad, N., Tahir, M. N., Ali, S. & Zia-ur-Rehman (2008a). Acta Cryst. E64, m946–m947. [PMC free article] [PubMed]
  • Muhammad, N., Tahir, M. N., Ali, S. & Zia-ur-Rehman (2008b). Acta Cryst. E64, m978. [PMC free article] [PubMed]
  • Muhammad, N., Tahir, M. N., Ali, S., Zia-ur-Rehman & Kashmiri, M. A. (2008). Acta Cryst. E64, o1456. [PMC free article] [PubMed]
  • Muhammad, N., Tahir, M. N., Zia-ur-Rehman & Ali, S. (2008). Acta Cryst. E64, o1458. [PMC free article] [PubMed]
  • Muhammad, N., Tahir, M. N., Zia-ur-Rehman, Ali, S. & Shaheen, F. (2008). Acta Cryst. E64, o1542. [PMC free article] [PubMed]
  • Muhammad, N., Zia-ur-Rehman, Ali, S. & Meetsma, A. (2007). Acta Cryst. E63, o2174–o2175.
  • Niaz, M., Tahir, M. N., Zia-ur-Rehman, Ali, S. & Khan, I. U. (2008). Acta Cryst. E64, o733. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography