PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1193.
Published online 2008 July 23. doi:  10.1107/S1600536808021880
PMCID: PMC2960731

catena-Poly[[(2-{1-[2-(2-amino­ethyl­amino)ethyl­imino]­eth­yl}-5-methoxy­phenolato-κ4 N,N′,N′′,O)copper(II)]-μ-nitrato-κ2 O:O′]

Abstract

In the title compound, [Cu(C13H20N3O2)(NO3)]n, the CuII atom is chelated by the Schiff base ligand via three N atoms and one O atom lying in an approximate square plane (r.m.s. deviation = 0.04 Å). The complex mol­ecules are linked into a polymeric chain by bridging nitrate anions, forming axial Cu—O bonds of 2.535 (6) and 2.676 (7) Å, completing a distorted octa­hedral coordination geometry. The NH groups of the ligand form hydrogen bonds to the nitrate anions.

Related literature

For related literature, see: Garnovskii et al. (1993 [triangle]); Huang et al. (2002 [triangle]); Bhadbhade & Srinivas (1993 [triangle]); Bunce et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1193-scheme1.jpg

Experimental

Crystal data

  • [Cu(C13H20N3O2)(NO3)]
  • M r = 375.87
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1193-efi1.jpg
  • a = 7.2012 (10) Å
  • b = 10.095 (2) Å
  • c = 11.581 (2) Å
  • α = 69.15 (2)°
  • β = 89.73 (2)°
  • γ = 89.95 (2)°
  • V = 786.8 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.42 mm−1
  • T = 293 (2) K
  • 0.43 × 0.28 × 0.22 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.569, T max = 0.730
  • 4891 measured reflections
  • 2739 independent reflections
  • 1896 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.160
  • S = 1.00
  • 2739 reflections
  • 213 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.91 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808021880/bi2290sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021880/bi2290Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the NSFC (grant No. 20776081).

supplementary crystallographic information

Comment

Schiff bases have been studied as ligands for a long time due to instant and enduring popularity from their easy synthesis and versatility in complexes. They play an important role in the development of coordination chemistry as well as inorganic biochemistry, catalysis, optical materials and so on (Garnovskii et al., 1993; Huang et al., 2002). Considerable attention has been focused on the syntheses and structures of CuII and NiII complexes. The NiII complexes with multidentate Schiff-base ligands have aroused particular interest because Ni can exhibit several oxidation states and may provide the basis of models for active sites of biological systems. On the other hand, the main attention in the optically active Schiff-base complexes is concentrated on their catalytic abilities in stereoselective synthesis (Bhadbhade & Srinivas, 1993; Bunce et al., 1998).

Experimental

A mixture of copper(II) nitrate hemi(pentahydrate) (1 mmol) and N-(2-hydroxy-4-methoxybenzyl)bisethylenetriamine (1 mmol) in 20 ml methanol was refluxed for two hours. The resulting solution was cooled and filtered and the filtrate was evaporated naturally at room temperature. Two day later, blue blocks were obtained with a yield of 16 %. Elemental analysis calculated: C 41.60, H 5.07, N 14.93 %; found: C 41.51, H 5.08, N 14.85 %.

Refinement

H atoms bound to C atoms were placed in calculated positions with C—H = 0.93–0.97 Å and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C). The H atoms bound to N4 were also placed in calculated positions with N—H = 0.90 Å and allowed to ride with Uiso(H) = 1.2Ueq(N). Atom H1 was located in a difference Fourier map and its position was refined with the N—H distance restrained to 0.90 (1) Å and with Uiso = 0.05 Å2.

Figures

Fig. 1.
The asymmetric unit of the title compound drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms.

Crystal data

[Cu(C13H20N3O2)(NO3)]Z = 2
Mr = 375.87F000 = 390
Triclinic, P1Dx = 1.587 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.2012 (10) ÅCell parameters from 2739 reflections
b = 10.095 (2) Åθ = 2.2–25.0º
c = 11.581 (2) ŵ = 1.42 mm1
α = 69.15 (2)ºT = 293 (2) K
β = 89.73 (2)ºBlock, blue
γ = 89.95 (2)º0.43 × 0.28 × 0.22 mm
V = 786.8 (3) Å3

Data collection

Bruker APEXII CCD diffractometer2739 independent reflections
Radiation source: fine-focus sealed tube1896 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.029
T = 293(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.2º
Absorption correction: multi-scan(SADABS; Bruker, 2001)h = −8→8
Tmin = 0.569, Tmax = 0.730k = −11→12
4891 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.160  w = 1/[σ2(Fo2) + (0.107P)2 + 0.9393P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.016
2739 reflectionsΔρmax = 0.91 e Å3
213 parametersΔρmin = −0.42 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.72893 (13)0.60509 (7)0.61951 (6)0.0396 (3)
C20.7556 (9)0.9968 (6)0.1737 (5)0.0428 (13)
C30.7606 (11)1.1062 (6)0.2212 (6)0.0533 (16)
H30.76751.20010.16820.064*
C40.7551 (10)1.0737 (7)0.3470 (6)0.0511 (16)
H40.75941.14750.37720.061*
C50.7434 (8)0.9336 (6)0.4323 (5)0.0355 (12)
C60.7281 (8)0.8240 (6)0.3825 (5)0.0379 (12)
C70.7387 (9)0.8620 (6)0.2511 (6)0.0430 (14)
H70.73370.79050.21810.052*
C80.7388 (8)0.9117 (6)0.5646 (5)0.0364 (12)
C90.7516 (10)1.0377 (7)0.6051 (6)0.0503 (15)
H9A0.65181.03420.66140.075*
H9B0.74281.12350.53420.075*
H9C0.86821.03570.64550.075*
C100.7303 (11)0.7615 (7)0.7821 (5)0.0519 (16)
H10A0.65460.83070.80110.062*
H10B0.85770.77160.80460.062*
C110.6598 (11)0.6117 (8)0.8535 (6)0.0625 (19)
H11A0.68950.58500.94040.075*
H11B0.52600.60790.84560.075*
C120.6772 (13)0.3710 (8)0.8405 (7)0.0637 (19)
H12A0.54260.37190.84410.076*
H12B0.72330.31520.92190.076*
C130.7406 (11)0.3068 (7)0.7474 (6)0.0562 (17)
H13A0.87290.28810.75570.067*
H13B0.67660.21770.76200.067*
N10.7187 (7)0.7844 (5)0.6477 (4)0.0402 (11)
N20.7485 (8)0.5147 (5)0.8029 (4)0.0415 (11)
H10.871 (2)0.517 (7)0.816 (6)0.050*
N30.2005 (9)0.5570 (6)0.6866 (6)0.0550 (14)
N40.6991 (8)0.4070 (5)0.6214 (5)0.0500 (13)
H4A0.58220.39370.60060.060*
H4B0.77730.39210.56640.060*
O10.7593 (8)1.0387 (5)0.0493 (4)0.0616 (13)
O20.7129 (9)0.6914 (4)0.4468 (4)0.0633 (15)
O30.0805 (9)0.5939 (7)0.6146 (6)0.0869 (18)
O40.3604 (9)0.5871 (7)0.6519 (7)0.096 (2)
O50.1656 (9)0.4935 (8)0.7984 (6)0.098 (2)
C10.7476 (17)0.9303 (8)−0.0054 (6)0.080 (3)
H1A0.85180.86740.02060.121*
H1B0.74880.9741−0.09380.121*
H1C0.63460.87760.02070.121*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0575 (5)0.0319 (4)0.0322 (4)−0.0024 (3)0.0031 (3)−0.0149 (3)
C20.040 (3)0.038 (3)0.048 (3)−0.004 (2)0.000 (3)−0.013 (3)
C30.076 (5)0.029 (3)0.046 (3)0.007 (3)−0.016 (3)0.000 (2)
C40.070 (4)0.035 (3)0.048 (3)−0.004 (3)0.013 (3)−0.015 (3)
C50.032 (3)0.033 (3)0.048 (3)−0.006 (2)0.013 (2)−0.022 (2)
C60.045 (3)0.033 (3)0.035 (3)−0.006 (2)−0.003 (2)−0.011 (2)
C70.050 (4)0.038 (3)0.048 (3)−0.005 (3)0.015 (3)−0.025 (3)
C80.031 (3)0.030 (3)0.051 (3)0.001 (2)0.006 (2)−0.018 (2)
C90.058 (4)0.046 (3)0.060 (4)−0.001 (3)−0.001 (3)−0.034 (3)
C100.077 (5)0.048 (3)0.037 (3)0.001 (3)0.002 (3)−0.022 (3)
C110.064 (5)0.078 (5)0.053 (4)−0.009 (4)0.010 (3)−0.033 (4)
C120.087 (6)0.053 (4)0.053 (4)−0.005 (4)−0.007 (4)−0.021 (3)
C130.072 (5)0.044 (4)0.053 (4)0.000 (3)0.016 (3)−0.020 (3)
N10.046 (3)0.044 (3)0.038 (2)−0.001 (2)0.005 (2)−0.025 (2)
N20.046 (3)0.049 (3)0.032 (2)−0.003 (2)0.002 (2)−0.018 (2)
N30.055 (4)0.055 (3)0.057 (4)−0.002 (3)0.004 (3)−0.022 (3)
N40.055 (3)0.046 (3)0.049 (3)−0.005 (2)0.006 (2)−0.017 (2)
O10.098 (4)0.042 (2)0.040 (2)−0.006 (2)−0.007 (2)−0.0085 (19)
O20.125 (5)0.029 (2)0.036 (2)−0.005 (2)0.000 (2)−0.0107 (17)
O30.065 (4)0.108 (5)0.078 (4)−0.005 (3)0.020 (3)−0.022 (3)
O40.060 (4)0.100 (5)0.147 (6)0.018 (3)−0.040 (4)−0.067 (5)
O50.071 (4)0.137 (6)0.076 (4)0.003 (4)−0.010 (3)−0.026 (4)
C10.155 (9)0.052 (4)0.038 (3)−0.008 (5)−0.003 (4)−0.020 (3)

Geometric parameters (Å, °)

Cu1—N11.952 (5)C10—C111.529 (10)
Cu1—N21.997 (5)C10—H10A0.970
Cu1—N42.004 (5)C10—H10B0.970
Cu1—O21.880 (4)C11—N21.453 (9)
Cu1—O3i2.535 (6)C11—H11A0.970
Cu1—O42.676 (7)C11—H11B0.970
C2—C71.342 (8)C12—N21.451 (9)
C2—O11.350 (7)C12—C131.511 (10)
C2—C31.398 (9)C12—H12A0.970
C3—C41.374 (9)C12—H12B0.970
C3—H30.930C13—N41.481 (9)
C4—C51.410 (8)C13—H13A0.970
C4—H40.930C13—H13B0.970
C5—C61.422 (8)N2—H10.90 (1)
C5—C81.468 (8)N3—O31.169 (9)
C6—O21.284 (7)N3—O41.220 (9)
C6—C71.433 (8)N3—O51.248 (8)
C7—H70.930N4—H4A0.900
C8—N11.310 (7)N4—H4B0.900
C8—C91.508 (8)O1—C11.449 (9)
C9—H9A0.960C1—H1A0.960
C9—H9B0.960C1—H1B0.960
C9—H9C0.960C1—H1C0.960
C10—N11.493 (7)
O2—Cu1—N193.98 (19)N2—C11—H11A110.0
O2—Cu1—N2179.4 (3)C10—C11—H11A110.0
N1—Cu1—N285.7 (2)N2—C11—H11B110.0
O2—Cu1—N495.0 (2)C10—C11—H11B110.0
N1—Cu1—N4167.3 (2)H11A—C11—H11B108.4
N2—Cu1—N485.4 (2)N2—C12—C13108.5 (6)
O2—Cu1—O493.8 (3)N2—C12—H12A110.0
N1—Cu1—O487.8 (2)C13—C12—H12A110.0
N2—Cu1—O486.7 (2)N2—C12—H12B110.0
N4—Cu1—O482.8 (2)C13—C12—H12B110.0
C7—C2—O1124.9 (5)H12A—C12—H12B108.4
C7—C2—C3119.6 (6)N4—C13—C12109.0 (6)
O1—C2—C3115.4 (5)N4—C13—H13A109.9
C4—C3—C2119.5 (6)C12—C13—H13A109.9
C4—C3—H3120.3N4—C13—H13B109.9
C2—C3—H3120.3C12—C13—H13B109.9
C3—C4—C5123.1 (6)H13A—C13—H13B108.3
C3—C4—H4118.5C8—N1—C10120.5 (5)
C5—C4—H4118.5C8—N1—Cu1126.7 (4)
C4—C5—C6116.8 (5)C10—N1—Cu1111.3 (4)
C4—C5—C8118.2 (5)C12—N2—C11118.0 (6)
C6—C5—C8124.9 (5)C12—N2—Cu1108.8 (4)
O2—C6—C5124.9 (5)C11—N2—Cu1106.1 (4)
O2—C6—C7116.7 (5)C12—N2—H1112 (4)
C5—C6—C7118.3 (5)C11—N2—H1108 (4)
C2—C7—C6122.5 (5)Cu1—N2—H1103 (4)
C2—C7—H7118.7O3—N3—O4119.1 (6)
C6—C7—H7118.7O3—N3—O5120.6 (7)
N1—C8—C5120.8 (5)O4—N3—O5120.2 (7)
N1—C8—C9119.6 (5)C13—N4—Cu1108.5 (4)
C5—C8—C9119.6 (5)C13—N4—H4A110.0
C8—C9—H9A109.5Cu1—N4—H4A110.0
C8—C9—H9B109.5C13—N4—H4B110.0
H9A—C9—H9B109.5Cu1—N4—H4B110.0
C8—C9—H9C109.5H4A—N4—H4B108.4
H9A—C9—H9C109.5C2—O1—C1117.9 (5)
H9B—C9—H9C109.5C6—O2—Cu1127.1 (4)
N1—C10—C11107.4 (5)N3—O4—Cu1167.6 (6)
N1—C10—H10A110.2O1—C1—H1A109.5
C11—C10—H10A110.2O1—C1—H1B109.5
N1—C10—H10B110.2H1A—C1—H1B109.5
C11—C10—H10B110.2O1—C1—H1C109.5
H10A—C10—H10B108.5H1A—C1—H1C109.5
N2—C11—C10108.5 (6)H1B—C1—H1C109.5

Symmetry codes: (i) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H1···O5i0.90 (1)2.15 (2)3.013 (8)161 (6)
N2—H1···O3i0.90 (1)2.65 (6)3.134 (8)115 (5)
N4—H4A···O2ii0.902.433.316 (9)168
N4—H4B···O3ii0.902.293.157 (8)162
N4—H4B···O4ii0.902.663.175 (9)118

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2290).

References

  • Bhadbhade, M. M. & Srinivas, D. (1993). Inorg. Chem.32, 6122–6130.
  • Bruker (2001). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bunce, S., Cross, R. J., Farrugia, L. J., Kunchandy, S., Meason, L. L., Muir, K. W., Donnell, M., Peacock, R. D., Stirling, D. & Teat, S. J. (1998). Polyhedron, 17, 4179–4187.
  • Garnovskii, A. D., Nivorozkhin, A. L. & Minkin, V. (1993). Coord. Chem. Rev.126, 1–69.
  • Huang, D. G., Zhu, H. P., Chen, C. N., Chen, F. & Liu, Q. T. (2002). Chin. J. Struct. Chem.21, 64–66.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography