PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1774–o1775.
Published online 2008 August 16. doi:  10.1107/S1600536808025774
PMCID: PMC2960725

3-(4-Fluoro­phenyl)-1-[1′-(4-fluoro­phenyl)-2-oxo-5′,6′,7′,7a′-tetra­hydro-1H-indole-3(2H)-spiro-3′(2′H)-1H′-pyrrol­izin-2′-yl]prop-2-en-1-one

Abstract

In the title compound, C29H24F2N2O2, one of the pyrrolidine rings of the pyrrolizine system is disordered over two sites, with occupancy factors 0.734:0.266 (12). Both components of the disordered pyrrolidine ring adopt envelope conformations, whereas the other pyrrolidine ring adopts a twist conformation. The mol­ecules are linked into centrosymmetric dimers by N—H(...)O hydrogen bonds and the dimers are connected via C—H(...)π inter­actions. The crystal structure is also stabilized by inter­molecular C—H(...)F hydrogen bonds.

Related literature

For related literature, see: Atal (1978 [triangle]); Cordel (1981 [triangle]); Cremer & Pople (1975 [triangle]); Denny (2001 [triangle]); Harris & Uhle (1960 [triangle]); Ho et al. (1986 [triangle]); Rajeswaran et al. (1999 [triangle]); Ramesh et al. (2007 [triangle]); Stevenson et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1774-scheme1.jpg

Experimental

Crystal data

  • C29H24F2N2O2
  • M r = 470.50
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1774-efi1.jpg
  • a = 8.3985 (4) Å
  • b = 12.0018 (6) Å
  • c = 12.5628 (6) Å
  • α = 96.464 (2)°
  • β = 104.348 (2)°
  • γ = 104.144 (2)°
  • V = 1169.23 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 (2) K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker KappaAPEXII diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.972, T max = 0.981
  • 25777 measured reflections
  • 6118 independent reflections
  • 4000 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.168
  • S = 1.05
  • 6118 reflections
  • 326 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2004 [triangle]); data reduction: SAINT and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808025774/bt2765sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025774/bt2765Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SN thanks Professor M. N. Ponnuswamy, Department of Crystallography and Biophysics, University of Madras, India, for his guidance and valuable suggestions, and the management of SRM, India, for their support.

supplementary crystallographic information

Comment

The spiro ring system is a frequently encountered structural motif in many pharmacologically relevant alkaloids (Cordel, 1981). Pyrrolizidine alkaloids occur in more than 40 genera, and are responsible for heavy losses of livestock and poisoning in man due to their hepatotoxity. These alkaloids are also reported to possess a number of other biological activities (Atal, 1978) and are used as DNA minor groove alkylating agents (Denny, 2001). Indole compounds can be used as bioactive drugs (Stevenson et al., 2000). Indole derivatives exhibit anti-allergic, central nervous system depressant and muscle relaxant properties (Harris & Uhle, 1960; Ho et al., 1986). Indoles have also been proved to display high aldose reductase inhibitory activity (Rajeswaran et al., 1999). In view of this biological importance, an X-ray study of the title compound, (I), was carried out.

An ORTEP (Farrugia, 1997) plot of the molecule is shown in Fig. 1. The pyrrolizine ring system is folded about the bridging N1—C1 bond, as observed in related structures (Ramesh et al., 2007). The sum of angles at N1 (339°) is in accordance with sp3 hybridization. The fluorine atoms attached at C11 and C27 are coplanar with the phenyl rings C8–C13 and C24–C29 as indicated by the torsion angles F1—C11—C12—C13 [179.4 (2)°] and F2—C27—C28—C29 [178.6 (2)°] respectively. The indole moiety is planar [maximum deviation of -0.045 (3)° from the least square plane defined by all non hydrogen atoms in the molecule] and makes a dihedral angle of 37 (6)° with the ring C8–C13, 53.7 (6)° with the ring C24–C29. Both the phenyl rings are nearly perpendicular to each other and are oriented at an angle of 82.1 (7)° with respect to each other. In the pyrrolizine ring system, the pyrrolidine ring (N1/C1/C5/C6/C7) adopts a twist conformation with Cremer & Pople (1975) puckering parameters q2 and [var phi] of 0.425 (2) Å and 123.6 (3)° respectively. The disordered pyrrolidine ring adopts an envelope conformation in both the major and minor conformers with Cremer & Pople (1975) puckering parameters q2 and [var phi] of 0.323 (4) Å and -59.2 (8)°, respectively, for the major conformer (N1/C1–C4), and 0.271 (13) Å and 96.8 (1)°, respectively, for the minor conformer (N1/C1/C2/C3A/C4). Atom C3/C3A deviates by -0.484 (3) Å / 0.402 (9) Å from the least square planes through the remaining four atoms N1, C1, C2 and C4.

In the crystal structure, symmetry-related molecules form N—H···O hydrogen-bonded dimers and the dimers are linked via C—H···π interactions involving C8–C13 benzene rings. The crystal structure is also stabilized by intermolecular C—H···F hydrogen bonds (Table 1) and van der Waals forces.

Experimental

A solution of (1E,6E)-4-(4-flurobenzylidene)-1,7-bis(4- flurophenyl)hepta-1,6-diene-3,5-dione (1 mmol), isatin (1 mmol) and L-proline (1 mmol) in aqueous methanol (20 ml) was refluxed until the disappearance of starting material as evidenced by TLC. The solvent was removed under reduced pressure and the crude product was purified by column chromatography using petroleum ether–ethylacetate (5:1) as eluent. The final product was recrystallized in ethanol and chloroform (2:8).

Refinement

The C atom of pyrrolizine unit is disordered over two positions with site occupancies of C3 = 0.734 (1) and C3A = 0.266 (1). H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.93, 0.98, and 0.97 Å for aromatic, methine and methylene respectively, and with Uiso(H) = 1.2Ueq(C) for all H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with 30% probability displacement ellipsoids.
Fig. 2.
The packing of the molecules viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involed in hydrogen bonds have been omitted.

Crystal data

C29H24F2N2O2Z = 2
Mr = 470.50F000 = 492
Triclinic, P1Dx = 1.336 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.3985 (4) ÅCell parameters from 7237 reflections
b = 12.0018 (6) Åθ = 2.2–27.9º
c = 12.5628 (6) ŵ = 0.10 mm1
α = 96.464 (2)ºT = 293 (2) K
β = 104.348 (2)ºPrism, colourless
γ = 104.144 (2)º0.30 × 0.20 × 0.20 mm
V = 1169.23 (10) Å3

Data collection

Bruker KappaAPEXII diffractometer6118 independent reflections
Radiation source: fine-focus sealed tube4000 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.032
T = 293(2) Kθmax = 29.0º
ω and [var phi] scansθmin = 1.7º
Absorption correction: multi-scan(Blessing, 1995)h = −10→11
Tmin = 0.972, Tmax = 0.981k = −16→16
25777 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.168  w = 1/[σ2(Fo2) + (0.0744P)2 + 0.4073P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
6118 reflectionsΔρmax = 0.27 e Å3
326 parametersΔρmin = −0.24 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.2007 (2)0.28284 (17)0.05257 (14)0.0421 (4)
H10.23390.35800.02880.051*
C20.0256 (3)0.2104 (2)−0.02359 (18)0.0643 (6)
H2A−0.03590.2602−0.06130.077*0.734 (12)
H2B0.03780.1529−0.07950.077*0.734 (12)
H2C0.02350.1297−0.04460.077*0.266 (12)
H2D−0.00670.2425−0.09060.077*0.266 (12)
C3−0.0654 (5)0.1528 (5)0.0501 (3)0.0599 (12)0.734 (12)
H3A−0.03970.07950.06030.072*0.734 (12)
H3B−0.18830.13770.01990.072*0.734 (12)
C3A−0.0922 (11)0.2214 (18)0.0519 (8)0.066 (4)0.266 (12)
H3C−0.14050.28580.03810.079*0.266 (12)
H3D−0.18570.15020.03530.079*0.266 (12)
C40.0019 (2)0.2405 (2)0.16055 (19)0.0590 (6)
H4A−0.06710.29450.16150.071*0.734 (12)
H4B0.00030.20040.22330.071*0.734 (12)
H4C−0.00170.16690.18610.071*0.266 (12)
H4D−0.04260.28730.20750.071*0.266 (12)
C50.3222 (2)0.28514 (14)0.24864 (13)0.0360 (4)
C60.4579 (2)0.28659 (14)0.18298 (13)0.0331 (3)
H60.51170.36810.18060.040*
C70.3473 (2)0.22630 (14)0.06553 (13)0.0350 (3)
H70.30110.14320.06650.042*
C80.4353 (2)0.23548 (14)−0.02503 (13)0.0350 (3)
C90.5264 (2)0.34286 (15)−0.04026 (15)0.0432 (4)
H90.53450.41050.00740.052*
C100.6052 (3)0.35163 (17)−0.12456 (16)0.0494 (5)
H100.66600.4238−0.13430.059*
C110.5911 (3)0.25112 (18)−0.19290 (16)0.0489 (5)
C120.5029 (3)0.14399 (17)−0.18227 (16)0.0510 (5)
H120.49510.0772−0.23090.061*
C130.4251 (2)0.13654 (16)−0.09742 (15)0.0437 (4)
H130.36480.0637−0.08880.052*
C140.2918 (2)0.18120 (15)0.30613 (15)0.0403 (4)
C150.2356 (3)0.06244 (17)0.26645 (18)0.0527 (5)
H150.20220.03380.19000.063*
C160.2291 (3)−0.01396 (19)0.3409 (2)0.0677 (7)
H160.1887−0.09420.31430.081*
C170.2819 (4)0.0282 (2)0.4534 (2)0.0740 (7)
H170.2794−0.02430.50240.089*
C180.3391 (3)0.1468 (2)0.49613 (19)0.0628 (6)
H180.37440.17510.57270.075*
C190.3414 (2)0.22114 (16)0.42044 (15)0.0445 (4)
C200.3922 (2)0.38838 (15)0.34997 (13)0.0371 (4)
C210.5974 (2)0.23417 (15)0.23597 (14)0.0381 (4)
C220.7119 (2)0.30084 (16)0.34466 (15)0.0430 (4)
H220.71060.37740.36560.052*
C230.8167 (2)0.25794 (18)0.41428 (16)0.0459 (4)
H230.82780.18530.38840.055*
C240.9164 (2)0.31492 (18)0.52817 (16)0.0464 (4)
C250.8823 (3)0.4085 (2)0.58393 (18)0.0585 (5)
H250.79640.43830.54660.070*
C260.9719 (3)0.4583 (2)0.6928 (2)0.0680 (6)
H260.94660.52010.73030.082*
C271.0995 (3)0.4140 (2)0.7441 (2)0.0720 (7)
C281.1373 (4)0.3227 (3)0.6940 (2)0.0853 (9)
H281.22460.29440.73190.102*
C291.0442 (3)0.2719 (2)0.5854 (2)0.0700 (7)
H291.06770.20790.55020.084*
N10.17837 (18)0.30269 (14)0.16568 (12)0.0426 (4)
N20.3950 (2)0.34354 (13)0.44352 (12)0.0453 (4)
H20.42590.38500.50950.054*
O10.60955 (18)0.14274 (12)0.19211 (12)0.0536 (4)
O20.44108 (18)0.49119 (11)0.34531 (10)0.0478 (3)
F21.1884 (3)0.46239 (17)0.85163 (14)0.1156 (7)
F10.6690 (2)0.25907 (13)−0.27532 (12)0.0781 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0388 (9)0.0485 (10)0.0329 (9)0.0100 (7)0.0052 (7)−0.0006 (7)
C20.0424 (10)0.0880 (17)0.0456 (11)0.0135 (10)−0.0019 (9)−0.0116 (11)
C30.0409 (16)0.062 (3)0.0602 (19)0.0008 (15)0.0059 (13)−0.0076 (17)
C3A0.036 (4)0.094 (11)0.055 (5)0.011 (5)0.001 (3)0.003 (6)
C40.0372 (9)0.0743 (15)0.0586 (13)0.0093 (9)0.0146 (9)−0.0037 (11)
C50.0377 (8)0.0356 (8)0.0290 (8)0.0045 (6)0.0097 (6)−0.0038 (6)
C60.0364 (8)0.0315 (8)0.0271 (7)0.0046 (6)0.0082 (6)0.0009 (6)
C70.0391 (8)0.0324 (8)0.0270 (8)0.0040 (6)0.0071 (6)−0.0015 (6)
C80.0381 (8)0.0365 (8)0.0271 (7)0.0090 (6)0.0064 (6)0.0026 (6)
C90.0528 (10)0.0344 (9)0.0389 (9)0.0082 (7)0.0132 (8)0.0016 (7)
C100.0574 (11)0.0436 (10)0.0467 (11)0.0069 (8)0.0192 (9)0.0125 (8)
C110.0559 (11)0.0577 (12)0.0377 (10)0.0160 (9)0.0210 (8)0.0101 (8)
C120.0675 (12)0.0449 (10)0.0417 (10)0.0146 (9)0.0232 (9)−0.0022 (8)
C130.0555 (10)0.0345 (9)0.0377 (9)0.0059 (7)0.0171 (8)0.0005 (7)
C140.0434 (9)0.0374 (9)0.0388 (9)0.0056 (7)0.0173 (7)0.0021 (7)
C150.0644 (12)0.0398 (10)0.0519 (11)0.0049 (9)0.0259 (10)0.0012 (8)
C160.0881 (17)0.0403 (11)0.0809 (17)0.0104 (11)0.0425 (14)0.0127 (11)
C170.0954 (19)0.0603 (15)0.0785 (18)0.0231 (13)0.0365 (15)0.0334 (13)
C180.0795 (15)0.0646 (14)0.0476 (12)0.0178 (12)0.0228 (11)0.0194 (10)
C190.0482 (10)0.0450 (10)0.0386 (9)0.0084 (8)0.0155 (8)0.0049 (8)
C200.0393 (8)0.0384 (9)0.0291 (8)0.0086 (7)0.0080 (6)−0.0027 (7)
C210.0392 (8)0.0396 (9)0.0358 (9)0.0092 (7)0.0128 (7)0.0076 (7)
C220.0414 (9)0.0442 (10)0.0404 (9)0.0111 (7)0.0087 (7)0.0052 (8)
C230.0439 (9)0.0536 (11)0.0443 (10)0.0161 (8)0.0156 (8)0.0132 (8)
C240.0389 (9)0.0558 (11)0.0418 (10)0.0086 (8)0.0089 (8)0.0151 (8)
C250.0564 (12)0.0670 (14)0.0446 (11)0.0175 (10)0.0003 (9)0.0117 (10)
C260.0739 (15)0.0629 (14)0.0493 (12)0.0054 (12)0.0016 (11)0.0049 (11)
C270.0622 (14)0.0758 (17)0.0485 (13)−0.0085 (12)−0.0116 (11)0.0164 (12)
C280.0637 (15)0.107 (2)0.0712 (17)0.0280 (15)−0.0137 (13)0.0259 (16)
C290.0569 (13)0.0871 (17)0.0663 (15)0.0310 (12)0.0057 (11)0.0184 (13)
N10.0354 (7)0.0516 (9)0.0343 (7)0.0099 (6)0.0066 (6)−0.0052 (6)
N20.0584 (9)0.0433 (9)0.0272 (7)0.0071 (7)0.0114 (7)−0.0028 (6)
O10.0599 (8)0.0498 (8)0.0526 (8)0.0225 (7)0.0145 (7)0.0033 (6)
O20.0624 (8)0.0360 (7)0.0370 (7)0.0084 (6)0.0096 (6)−0.0023 (5)
F20.1142 (14)0.1158 (14)0.0608 (10)−0.0031 (11)−0.0354 (10)0.0071 (9)
F10.1005 (11)0.0816 (10)0.0676 (9)0.0190 (8)0.0574 (8)0.0156 (7)

Geometric parameters (Å, °)

C1—N11.479 (2)C11—F11.356 (2)
C1—C21.524 (3)C11—C121.357 (3)
C1—C71.529 (2)C12—C131.382 (3)
C1—H10.9800C12—H120.9300
C2—C31.468 (4)C13—H130.9300
C2—C3A1.549 (11)C14—C151.377 (3)
C2—H2A0.9700C14—C191.384 (2)
C2—H2B0.9700C15—C161.383 (3)
C2—H2C0.9700C15—H150.9300
C2—H2D0.9700C16—C171.367 (4)
C3—C41.531 (4)C16—H160.9300
C3—H3A0.9700C17—C181.383 (4)
C3—H3B0.9700C17—H170.9300
C3A—C41.359 (9)C18—C191.375 (3)
C3A—H3C0.9700C18—H180.9300
C3A—H3D0.9700C19—N21.400 (2)
C4—N11.469 (2)C20—O21.214 (2)
C4—H4A0.9700C20—N21.344 (2)
C4—H4B0.9700C21—O11.210 (2)
C4—H4C0.9700C21—C221.469 (2)
C4—H4D0.9700C22—C231.321 (3)
C5—N11.463 (2)C22—H220.9300
C5—C141.510 (2)C23—C241.457 (3)
C5—C201.555 (2)C23—H230.9300
C5—C61.562 (2)C24—C291.381 (3)
C6—C211.510 (2)C24—C251.383 (3)
C6—C71.521 (2)C25—C261.372 (3)
C6—H60.9800C25—H250.9300
C7—C81.503 (2)C26—C271.364 (4)
C7—H70.9800C26—H260.9300
C8—C131.383 (2)C27—C281.346 (4)
C8—C91.389 (2)C27—F21.353 (3)
C9—C101.382 (3)C28—C291.376 (4)
C9—H90.9300C28—H280.9300
C10—C111.361 (3)C29—H290.9300
C10—H100.9300N2—H20.8600
N1—C1—C2105.62 (15)C1—C7—H7108.2
N1—C1—C7105.01 (14)C13—C8—C9117.88 (16)
C2—C1—C7117.17 (16)C13—C8—C7120.64 (15)
N1—C1—H1109.6C9—C8—C7121.47 (15)
C2—C1—H1109.6C10—C9—C8121.56 (17)
C7—C1—H1109.6C10—C9—H9119.2
C3—C2—C1105.6 (2)C8—C9—H9119.2
C1—C2—C3A101.9 (4)C11—C10—C9117.82 (17)
C3—C2—H2A110.6C11—C10—H10121.1
C1—C2—H2A110.6C9—C10—H10121.1
C3A—C2—H2A80.4F1—C11—C12118.78 (18)
C3—C2—H2B110.6F1—C11—C10118.11 (18)
C1—C2—H2B110.6C12—C11—C10123.12 (17)
C3A—C2—H2B139.4C11—C12—C13118.41 (17)
H2A—C2—H2B108.8C11—C12—H12120.8
C3—C2—H2C78.3C13—C12—H12120.8
C1—C2—H2C111.4C12—C13—C8121.21 (17)
C3A—C2—H2C111.4C12—C13—H13119.4
H2A—C2—H2C132.4C8—C13—H13119.4
C3—C2—H2D135.4C15—C14—C19118.80 (18)
C1—C2—H2D111.4C15—C14—C5132.45 (17)
C3A—C2—H2D111.4C19—C14—C5108.66 (15)
H2B—C2—H2D78.9C14—C15—C16119.7 (2)
H2C—C2—H2D109.2C14—C15—H15120.2
C2—C3—C4104.1 (3)C16—C15—H15120.2
C4—C3—H2C130.6C17—C16—C15120.1 (2)
C2—C3—H3A110.9C17—C16—H16119.9
C4—C3—H3A110.9C15—C16—H16119.9
H2C—C3—H3A76.6C16—C17—C18121.8 (2)
C2—C3—H3B110.9C16—C17—H17119.1
C4—C3—H3B110.9C18—C17—H17119.1
H2C—C3—H3B111.9C19—C18—C17117.1 (2)
H3A—C3—H3B108.9C19—C18—H18121.5
C4—C3A—C2108.7 (7)C17—C18—H18121.5
C4—C3A—H3C109.9C18—C19—C14122.56 (19)
C2—C3A—H3C109.9C18—C19—N2127.44 (18)
C4—C3A—H3D109.9C14—C19—N2109.98 (16)
C2—C3A—H3D109.9O2—C20—N2126.12 (15)
H3C—C3A—H3D108.3O2—C20—C5125.79 (15)
C3A—C4—N1106.7 (5)N2—C20—C5108.05 (14)
N1—C4—C3105.11 (19)O1—C21—C22123.42 (17)
C3A—C4—H4A77.2O1—C21—C6121.68 (16)
N1—C4—H4A110.7C22—C21—C6114.88 (15)
C3—C4—H4A110.7C23—C22—C21123.53 (18)
C3A—C4—H4B136.2C23—C22—H22118.2
N1—C4—H4B110.7C21—C22—H22118.2
C3—C4—H4B110.7C22—C23—C24125.45 (19)
H4A—C4—H4B108.8C22—C23—H23117.3
C3A—C4—H4C110.4C24—C23—H23117.3
N1—C4—H4C110.4C29—C24—C25118.1 (2)
C3—C4—H4C78.1C29—C24—C23119.8 (2)
H4A—C4—H4C133.5C25—C24—C23122.09 (18)
C3A—C4—H4D110.4C26—C25—C24121.7 (2)
N1—C4—H4D110.4C26—C25—H25119.2
C3—C4—H4D138.0C24—C25—H25119.2
H4B—C4—H4D76.8C27—C26—C25117.6 (3)
H4C—C4—H4D108.6C27—C26—H26121.2
N1—C5—C14119.15 (14)C25—C26—H26121.2
N1—C5—C20110.39 (14)C28—C27—F2118.8 (3)
C14—C5—C20101.45 (13)C28—C27—C26123.1 (2)
N1—C5—C6102.58 (13)F2—C27—C26118.0 (3)
C14—C5—C6113.29 (14)C27—C28—C29118.7 (2)
C20—C5—C6110.04 (13)C27—C28—H28120.6
C21—C6—C7116.33 (14)C29—C28—H28120.6
C21—C6—C5113.42 (13)C28—C29—C24120.8 (3)
C7—C6—C5102.51 (12)C28—C29—H29119.6
C21—C6—H6108.1C24—C29—H29119.6
C7—C6—H6108.1C5—N1—C4119.79 (16)
C5—C6—H6108.1C5—N1—C1110.37 (13)
C8—C7—C6116.02 (13)C4—N1—C1108.80 (14)
C8—C7—C1114.92 (14)C20—N2—C19111.77 (14)
C6—C7—C1100.91 (13)C20—N2—H2124.1
C8—C7—H7108.2C19—N2—H2124.1
C6—C7—H7108.2
N1—C1—C2—C3−22.5 (3)C16—C17—C18—C19−0.3 (4)
C7—C1—C2—C394.0 (3)C17—C18—C19—C14−1.0 (3)
N1—C1—C2—C3A13.1 (8)C17—C18—C19—N2−179.4 (2)
C7—C1—C2—C3A129.6 (8)C15—C14—C19—C181.0 (3)
C1—C2—C3—C432.4 (4)C5—C14—C19—C18−175.96 (19)
C3A—C2—C3—C4−56.1 (6)C15—C14—C19—N2179.63 (17)
C3—C2—C3A—C473.3 (11)C5—C14—C19—N22.7 (2)
C1—C2—C3A—C4−26.9 (14)N1—C5—C20—O2−55.5 (2)
C2—C3A—C4—N129.4 (14)C14—C5—C20—O2177.23 (17)
C2—C3A—C4—C3−63.4 (10)C6—C5—C20—O257.0 (2)
C2—C3—C4—C3A67.1 (8)N1—C5—C20—N2126.72 (15)
C2—C3—C4—N1−30.7 (4)C14—C5—C20—N2−0.55 (17)
N1—C5—C6—C21−162.29 (13)C6—C5—C20—N2−120.77 (15)
C14—C5—C6—C21−32.54 (19)C7—C6—C21—O1−7.2 (2)
C20—C5—C6—C2180.24 (17)C5—C6—C21—O1111.39 (18)
N1—C5—C6—C7−36.04 (15)C7—C6—C21—C22174.40 (14)
C14—C5—C6—C793.71 (15)C5—C6—C21—C22−67.06 (18)
C20—C5—C6—C7−153.52 (14)O1—C21—C22—C23−13.3 (3)
C21—C6—C7—C8−68.07 (19)C6—C21—C22—C23165.08 (17)
C5—C6—C7—C8167.58 (14)C21—C22—C23—C24−171.84 (17)
C21—C6—C7—C1167.06 (14)C22—C23—C24—C29−168.2 (2)
C5—C6—C7—C142.72 (16)C22—C23—C24—C2515.0 (3)
N1—C1—C7—C8−159.55 (14)C29—C24—C25—C260.2 (3)
C2—C1—C7—C883.6 (2)C23—C24—C25—C26177.1 (2)
N1—C1—C7—C6−33.95 (16)C24—C25—C26—C271.4 (4)
C2—C1—C7—C6−150.76 (17)C25—C26—C27—C28−1.8 (4)
C6—C7—C8—C13128.54 (17)C25—C26—C27—F2−179.9 (2)
C1—C7—C8—C13−114.13 (18)F2—C27—C28—C29178.6 (2)
C6—C7—C8—C9−52.7 (2)C26—C27—C28—C290.6 (5)
C1—C7—C8—C964.7 (2)C27—C28—C29—C241.1 (4)
C13—C8—C9—C10−0.2 (3)C25—C24—C29—C28−1.4 (4)
C7—C8—C9—C10−179.01 (17)C23—C24—C29—C28−178.5 (2)
C8—C9—C10—C110.0 (3)C14—C5—N1—C416.4 (2)
C9—C10—C11—F1−179.59 (18)C20—C5—N1—C4−100.36 (18)
C9—C10—C11—C120.4 (3)C6—C5—N1—C4142.41 (15)
F1—C11—C12—C13179.42 (19)C14—C5—N1—C1−111.12 (16)
C10—C11—C12—C13−0.6 (3)C20—C5—N1—C1132.15 (15)
C11—C12—C13—C80.3 (3)C6—C5—N1—C114.92 (17)
C9—C8—C13—C120.0 (3)C3A—C4—N1—C5−148.7 (10)
C7—C8—C13—C12178.86 (17)C3—C4—N1—C5−111.4 (3)
N1—C5—C14—C1561.0 (3)C3A—C4—N1—C1−20.5 (10)
C20—C5—C14—C15−177.7 (2)C3—C4—N1—C116.8 (3)
C6—C5—C14—C15−59.8 (3)C2—C1—N1—C5136.26 (17)
N1—C5—C14—C19−122.63 (16)C7—C1—N1—C511.79 (18)
C20—C5—C14—C19−1.30 (18)C2—C1—N1—C42.9 (2)
C6—C5—C14—C19116.59 (16)C7—C1—N1—C4−121.54 (17)
C19—C14—C15—C160.3 (3)O2—C20—N2—C19−175.54 (17)
C5—C14—C15—C16176.3 (2)C5—C20—N2—C192.2 (2)
C14—C15—C16—C17−1.5 (4)C18—C19—N2—C20175.4 (2)
C15—C16—C17—C181.5 (4)C14—C19—N2—C20−3.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.092.922 (2)164
C9—H9···F2ii0.932.553.165 (3)124
C28—H28···Cg1iii0.932.973.886 (3)169

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x+1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2765).

References

  • Atal, C. K. (1978). Lloydia, 41, 312–326. [PubMed]
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cordel, G. (1981). Introduction to Alkaloids, A Biogenetic Approach New York: Wiley International.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Denny, W. A. (2001). Curr. Med. Chem.8, 533–544. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther.128, 353–363.
  • Ho, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem.29, 118–121.
  • Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem.64, 1369–1371.
  • Ramesh, P., Murugavel, S., SubbiahPandi, A., Murugan, R. & Narayanan, S. S. (2007). Acta Cryst. E63, o4106–o4107.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stevenson, G. I., Smith, A. L., Lewis, S., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett.10, 2697–2704. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography