PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1807.
Published online 2008 August 23. doi:  10.1107/S1600536808026603
PMCID: PMC2960723

(E,E)-1,5-Di-2-thienylpenta-1,4-dien-3-one

Abstract

In the title compound, C13H10OS2, the dihedral angle between the thio­phene rings is 14.3 (1)°. The mol­ecular structure is stabilized by C—H(...)π inter­actions between a thio­phene H atom and an adjacent thio­phene ring, and by inter­molecular C—H(...)O hydrogen bonds.

Related literature

For the bioactivity of chalcones, see: Go et al. (2005 [triangle]). For uses in organic solid-state photochemistry, see: Gould et al. (1995 [triangle]); For a related structure, see: Arshad et al. (2008 [triangle]). For the non-linear optical properties of bis-chalcones, see: Uchida et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1807-scheme1.jpg

Experimental

Crystal data

  • C13H10OS2
  • M r = 246.35
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1807-efi10.jpg
  • a = 12.1141 (4) Å
  • b = 7.4449 (3) Å
  • c = 27.246 (1) Å
  • V = 2457.27 (16) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.41 mm−1
  • T = 293 (2) K
  • 0.26 × 0.15 × 0.15 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.984, T max = 0.987
  • 13976 measured reflections
  • 2373 independent reflections
  • 1719 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.210
  • S = 1.01
  • 2373 reflections
  • 145 parameters
  • H-atom parameters constrained
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2004 [triangle]); data reduction: SAINT and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia (1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808026603/lx2066sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026603/lx2066Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SM and ASP thank Dr S. Pandi, Head of the Department of Physics, Presidency College (Autonomous), Chennai, for providing the necessary facilities.

supplementary crystallographic information

Comment

Chalcones with the general formula Ar—CH═CH—CO—Ar are an important class of compounds, with the common structural entity being the central –CH═CH—C(═O)- group, in the H atoms can be substituted. The –C═C– double bond can be photoreactive and can produce various products through solid-state photo cycloaddition. Therefore, chalcones are widely used in organic solid-state photochemistry (Gould et al., 1995). Reviews on the bioactivities of various chalcones have been reported (Go et al., 2005). Bis-chalcones are also found to exhibit good NLO properties (Uchida et al., 1998). In view of this biological importance, the crystal structure of the title compound (I), (1E, 4E)-1,5-Bis(2-thienyl)penta-1,4-dien-3-one (Fig. 1) has been determined and the results are presented here.

Compound (I) consists of two thiophene rings A and B. The central position of (I) shows double and single bonds orientating from O1 atom and five C atom behave like a backbone. The planarities of rings A and B are fairly good. The bond lengths in the (I) are normal and comparable with the corresponding values observed in the related structure (Arshad et al., 2008). The dihedral angle between the two thiophene rings is 14.3 (1)°. The crystal packing (Fig. 2) is stabilized by C—H···π interactions between a thiophene H atom and a neighbouring thiophene ring, with a C11—H11···Cgiii separetion of 2.34 Å (Fig. 2 and Table 1; Cg is the centroid of the C10/C11/C12/C13/S1 thiophene ring, symmetry code as in Fig. 2). The molecular packing is further stabilized by intermolecular C—H···O hydrogen bonds (Fig. 2 and Table 1; symmetry code as in Fig. 2).

Experimental

A solution of sodium hydroxide (10 g, 0.25 mol) in water (50 ml) was added to a solution of acetone (5 ml) and 2-thiophenecarboxaldehyde (22.4 g, 0.2 mol) in methanol (50 ml) at 273 K. This mixture was stirred overnight and the product was filtered. Single crystals suitable for X-ray diffraction was obtained by slow evaporation of a solution of the title compound in ethyl acetate.

Refinement

All H atoms were fixed geometrically and allowed to ride on their parent atoms, with N—H=0.86Å and C—H= 0.93–0.98Å with Uiso(H)= 1.5Ueq(methyl H) and 1.2Ueq(for other H atoms).

Figures

Fig. 1.
The molecular structure of title compound showing 30% probability displacement ellipsoids.
Fig. 2.
C—H···π and C—H···O interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry code: (i) x-1/2, -y+1/2, -z+1; (ii)x-1/2, y, -z+1/2; (iii) x-1/2, y, ...

Crystal data

C13H10OS2F000 = 1024
Mr = 246.35Dx = 1.332 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 10259 reflections
a = 12.1141 (4) Åθ = 2.3–30.3º
b = 7.4449 (3) ŵ = 0.41 mm1
c = 27.246 (1) ÅT = 293 (2) K
V = 2457.27 (16) Å3Block, colourless
Z = 80.26 × 0.15 × 0.15 mm

Data collection

Bruker APEXII CCD area-detector diffractometer2373 independent reflections
Radiation source: fine-focus sealed tube1719 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
Detector resolution: 10 pixels mm-1θmax = 26.0º
T = 293(2) Kθmin = 1.5º
ω scansh = −11→14
Absorption correction: Multi-scan(SADABS; Sheldrick, 1996)k = −7→9
Tmin = 0.984, Tmax = 0.987l = −32→31
13976 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.211  w = 1/[σ2(Fo2) + (0.1295P)2 + 1.4091P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2373 reflectionsΔρmax = 0.49 e Å3
145 parametersΔρmin = −0.36 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.52710 (7)0.54328 (13)0.23889 (4)0.0733 (4)
S20.53529 (8)0.23805 (14)0.51370 (4)0.0801 (4)
O10.82061 (18)0.5548 (4)0.38920 (9)0.0734 (7)
C10.5312 (3)0.2113 (6)0.57495 (18)0.0876 (13)
H10.47680.14550.59100.105*
C20.6135 (4)0.2934 (6)0.59817 (16)0.0907 (12)
H20.62090.29040.63210.109*
C30.6903 (3)0.3874 (5)0.56716 (12)0.0667 (9)
H30.75250.45070.57730.080*
C40.6519 (3)0.3642 (4)0.51665 (13)0.0612 (8)
C50.7055 (3)0.4350 (4)0.47339 (13)0.0610 (8)
H50.77550.48430.47740.073*
C60.6638 (3)0.4359 (4)0.42854 (13)0.0612 (8)
H60.59380.38810.42360.073*
C70.7236 (2)0.5093 (4)0.38617 (12)0.0573 (8)
C80.6611 (2)0.5283 (4)0.34019 (12)0.0594 (8)
H80.59010.48100.33840.071*
C90.7027 (2)0.6109 (4)0.30106 (12)0.0565 (7)
H90.77330.65830.30450.068*
C100.6513 (2)0.6354 (4)0.25413 (12)0.0536 (7)
C110.6974 (2)0.7299 (4)0.21337 (11)0.0541 (7)
H110.76530.78820.21320.065*
C120.6228 (3)0.7207 (6)0.17301 (14)0.0794 (10)
H120.63640.77640.14310.095*
C130.5322 (3)0.6260 (6)0.18183 (15)0.0774 (11)
H130.47710.60740.15860.093*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0542 (6)0.0750 (6)0.0909 (8)−0.0090 (4)−0.0089 (4)−0.0068 (5)
S20.0619 (6)0.0821 (7)0.0962 (9)−0.0065 (4)0.0047 (4)0.0076 (5)
O10.0483 (13)0.1008 (18)0.0710 (16)−0.0067 (11)0.0009 (10)−0.0029 (12)
C10.069 (2)0.090 (3)0.103 (3)0.0109 (19)0.018 (2)0.033 (2)
C20.091 (3)0.113 (3)0.068 (2)0.012 (3)0.000 (2)0.013 (2)
C30.071 (2)0.073 (2)0.056 (2)−0.0057 (16)−0.0001 (15)0.0110 (15)
C40.0558 (17)0.0542 (15)0.074 (2)0.0020 (13)0.0024 (14)0.0003 (14)
C50.0527 (16)0.0593 (17)0.071 (2)−0.0027 (13)−0.0005 (15)−0.0028 (14)
C60.0510 (16)0.0621 (17)0.071 (2)−0.0018 (13)0.0012 (14)−0.0036 (15)
C70.0497 (17)0.0576 (16)0.065 (2)0.0021 (13)0.0033 (13)−0.0081 (14)
C80.0467 (15)0.0646 (17)0.067 (2)−0.0029 (13)0.0012 (14)−0.0081 (15)
C90.0435 (14)0.0592 (16)0.067 (2)−0.0007 (12)−0.0031 (13)−0.0097 (14)
C100.0457 (15)0.0511 (14)0.0641 (19)0.0013 (12)−0.0020 (13)−0.0103 (13)
C110.0442 (14)0.0624 (17)0.0558 (18)−0.0046 (12)−0.0030 (12)−0.0082 (13)
C120.081 (2)0.096 (3)0.062 (2)0.013 (2)0.0044 (18)−0.0026 (18)
C130.063 (2)0.091 (3)0.078 (3)0.0085 (18)−0.0146 (17)−0.022 (2)

Geometric parameters (Å, °)

S1—C131.673 (5)C6—C71.468 (5)
S1—C101.704 (3)C6—H60.9300
S2—C11.682 (5)C7—C81.471 (5)
S2—C41.699 (3)C8—C91.330 (5)
O1—C71.225 (4)C8—H80.9300
C1—C21.330 (6)C9—C101.434 (4)
C1—H10.9300C9—H90.9300
C2—C31.438 (5)C10—C111.429 (4)
C2—H20.9300C11—C121.425 (5)
C3—C41.463 (5)C11—H110.9300
C3—H30.9300C12—C131.326 (5)
C4—C51.445 (5)C12—H120.9300
C5—C61.322 (5)C13—H130.9300
C5—H50.9300
C13—S1—C1092.62 (17)O1—C7—C8121.6 (3)
C1—S2—C492.5 (2)C6—C7—C8116.8 (3)
C2—C1—S2113.3 (3)C9—C8—C7122.1 (3)
C2—C1—H1123.3C9—C8—H8118.9
S2—C1—H1123.3C7—C8—H8118.9
C1—C2—C3115.4 (4)C8—C9—C10127.5 (3)
C1—C2—H2122.3C8—C9—H9116.3
C3—C2—H2122.3C10—C9—H9116.3
C2—C3—C4106.8 (3)C9—C10—C11125.9 (3)
C2—C3—H3126.6C9—C10—S1123.3 (2)
C4—C3—H3126.6C11—C10—S1110.7 (2)
C5—C4—C3125.6 (3)C12—C11—C10109.1 (3)
C5—C4—S2122.5 (3)C12—C11—H11125.4
C3—C4—S2112.0 (2)C10—C11—H11125.4
C6—C5—C4125.7 (3)C13—C12—C11114.2 (4)
C6—C5—H5117.1C13—C12—H12122.9
C4—C5—H5117.1C11—C12—H12122.9
C5—C6—C7122.7 (3)C12—C13—S1113.3 (3)
C5—C6—H6118.7C12—C13—H13123.4
C7—C6—H6118.7S1—C13—H13123.4
O1—C7—C6121.5 (3)
C4—S2—C1—C20.3 (4)O1—C7—C8—C9−6.5 (5)
S2—C1—C2—C3−0.5 (5)C6—C7—C8—C9172.5 (3)
C1—C2—C3—C40.5 (5)C7—C8—C9—C10178.8 (3)
C2—C3—C4—C5−179.2 (3)C8—C9—C10—C11177.9 (3)
C2—C3—C4—S2−0.3 (4)C8—C9—C10—S1−5.4 (4)
C1—S2—C4—C5179.0 (3)C13—S1—C10—C9−177.9 (3)
C1—S2—C4—C30.1 (3)C13—S1—C10—C11−0.8 (2)
C3—C4—C5—C6−170.2 (3)C9—C10—C11—C12178.5 (3)
S2—C4—C5—C611.1 (5)S1—C10—C11—C121.5 (3)
C4—C5—C6—C7−179.5 (3)C10—C11—C12—C13−1.6 (4)
C5—C6—C7—O18.6 (5)C11—C12—C13—S11.0 (4)
C5—C6—C7—C8−170.4 (3)C10—S1—C13—C12−0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.473.374 (5)165
C13—H13···O1ii0.932.333.255 (4)171
C11—H11···Cgiii0.933.123.936 (5)148

Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) x−1/2, y, −z+1/2; (iii) −x+3/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2066).

References

  • Arshad, M. N., Tahir, M. N., Asghar, M. N., Khan, I. U. & Ashfaq, M. (2008). Acta Cryst. E64, o1413. [PMC free article] [PubMed]
  • Bruker (2004). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Go, M. L., Wu, X. & Liu, X. L. (2005). Curr. Med. Chem.12, 483–499. [PubMed]
  • Gould, B. S., Panneerelvam, K., Zacharias, D. E. & Desiraju, G. R. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 325–330.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst.315, 135–140.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography