PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1825.
Published online 2008 August 23. doi:  10.1107/S1600536808026895
PMCID: PMC2960722

N-(3-Chloro­phen­yl)benzene­sulfonamide

Abstract

In the crystal structure of the title compound, C12H10ClNO2S, the N—H bond is trans to one of the S=O bonds. The two aromatic rings form a dihedral angle of 65.4 (1)°, compared with a value of 49.1 (1)° in N-(2-chloro­phen­yl)-benzene­sulfonamide. The mol­ecules are connected by inter­molecular N—H(...)O hydrogen bonds into chains running along the b axis.

Related literature

For related literature, see: Gelbrich et al. (2007 [triangle]); Gowda et al. (2005 [triangle], 2008a [triangle],b [triangle]); Perlovich et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1825-scheme1.jpg

Experimental

Crystal data

  • C12H10ClNO2S
  • M r = 267.72
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-64-o1825-efi1.jpg
  • a = 8.8357 (7) Å
  • c = 32.081 (5) Å
  • V = 2504.6 (5) Å3
  • Z = 8
  • Cu Kα radiation
  • μ = 4.18 mm−1
  • T = 299 (2) K
  • 0.38 × 0.35 × 0.33 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.222, T max = 0.251
  • 5004 measured reflections
  • 2232 independent reflections
  • 2054 reflections with I > 2σ(I)
  • R int = 0.071
  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.094
  • S = 1.10
  • 2232 reflections
  • 158 parameters
  • 19 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.21 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 840 Friedel pairs
  • Flack parameter: −0.01 (2)

Data collection: CAD-4-PC (Enraf–Nonius, 1996 [triangle]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808026895/ci2659sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026895/ci2659Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the crystal structures of N-(aryl)-benzenesulfonamides, in the present work, the structure of N-(3-chlorophenyl)-benzenesulfonamide (N3CPBSA) has been determined (Gowda et al., 2008a,b). The N—H bond is trans to one of the S═O bonds (Fig. 1). Further, the conformation of the N—H bond is anti to the meta-chloro group in the aniline benzene ring, in contrast to the syn conformation observed with respect to the ortho-chloro group in N-(2-chlorophenyl)-benzenesulfonamide (N2CPBSA) (Perlovich et al., 2006). The two benzene rings form a dihedral angle of 65.4 (1)° compared with the value of 49.1 (1)° in N2CPBSA. The other bond parameters in N3CPBSA are similar to those observed in N2CPBSA (Perlovich et al., 2006) and other N-(aryl)-benzenesulfonamides (Gelbrich et al., 2007; Gowda et al., 2008a,b).

The packing diagram of N3CPBSA showing the N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

Experimental

The solution of benzene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 273 K. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual benzenesulfonylchloride was treated with m-chloroaniline in the stoichiometric ratio and boiled for 10 min. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid N-(3-chlorophenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Gowda et al., 2005). Single crystals used in X-ray diffraction studies were grown in an ethanolic solution by evaporating it at room temperature.

Refinement

The H atom of the NH group was located in a difference map and was refined with a N-H distance restraint of 0.90 (1) Å. The other H atoms were positioned with idealized geometry (C-H = 0.93 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). The Uij components of C4, C5 and C6 were restrained to approximate isotropic behaviour.

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing of the title compound, showing hydrogen-bonded (dashed lines) chains.

Crystal data

C12H10ClNO2SZ = 8
Mr = 267.72F000 = 1104
Tetragonal, P43212Dx = 1.420 Mg m3
Hall symbol: P 4nw 2abwCu Kα radiation λ = 1.54180 Å
a = 8.8357 (7) ÅCell parameters from 25 reflections
b = 8.8357 (7) Åθ = 6.5–18.9º
c = 32.081 (5) ŵ = 4.18 mm1
α = 90ºT = 299 (2) K
β = 90ºPrism, colourless
γ = 90º0.38 × 0.35 × 0.33 mm
V = 2504.6 (5) Å3

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.072
Radiation source: fine-focus sealed tubeθmax = 66.8º
Monochromator: graphiteθmin = 5.2º
T = 299(2) Kh = −10→0
ω/2θ scansk = −10→0
Absorption correction: ψ scan(North et al., 1968)l = −38→37
Tmin = 0.222, Tmax = 0.2513 standard reflections
5004 measured reflections every 120 min
2232 independent reflections intensity decay: 1.0%
2054 reflections with I > 2σ(I)

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035  w = 1/[σ2(Fo2) + (0.0371P)2 + 0.1574P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max = 0.004
S = 1.10Δρmax = 0.19 e Å3
2232 reflectionsΔρmin = −0.21 e Å3
158 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
19 restraintsExtinction coefficient: 0.0031 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 840 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: −0.01 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.0696 (3)−0.0170 (3)0.09615 (8)0.0566 (6)
C2−0.2118 (3)−0.0569 (4)0.10996 (9)0.0763 (8)
H2−0.26030.00010.13040.092*
C3−0.2814 (4)−0.1829 (4)0.09306 (12)0.1005 (11)
H3−0.3771−0.21120.10230.121*
C4−0.2119 (5)−0.2644 (4)0.06353 (16)0.1213 (15)
H4−0.2601−0.34860.05230.146*
C5−0.0724 (5)−0.2253 (5)0.04988 (17)0.1362 (17)
H5−0.0247−0.28400.02970.163*
C60.0006 (4)−0.0978 (4)0.06576 (12)0.0987 (12)
H60.0951−0.06880.05580.118*
C7−0.0413 (3)0.3249 (2)0.05535 (7)0.0518 (5)
C8−0.1736 (3)0.3333 (3)0.03316 (7)0.0571 (5)
H8−0.26590.31230.04580.069*
C9−0.1672 (3)0.3736 (3)−0.00854 (8)0.0633 (6)
C10−0.0304 (3)0.4020 (3)−0.02766 (8)0.0685 (7)
H10−0.02690.4276−0.05580.082*
C110.1000 (3)0.3923 (3)−0.00488 (8)0.0687 (7)
H110.19250.4114−0.01760.082*
C120.0959 (3)0.3547 (3)0.03655 (8)0.0633 (6)
H120.18500.34940.05190.076*
Cl1−0.33446 (9)0.38734 (11)−0.03637 (3)0.1003 (3)
N1−0.0492 (2)0.2925 (2)0.09923 (6)0.0542 (5)
H1N−0.1414 (15)0.300 (3)0.1090 (7)0.065*
O1−0.0183 (2)0.1447 (2)0.16226 (5)0.0712 (5)
O20.17669 (17)0.1309 (2)0.10738 (6)0.0678 (5)
S10.02122 (6)0.13880 (7)0.119048 (18)0.05501 (19)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0552 (12)0.0546 (11)0.0599 (13)0.0022 (9)−0.0124 (11)0.0011 (11)
C20.0731 (16)0.0876 (19)0.0681 (16)−0.0161 (14)−0.0063 (14)0.0007 (15)
C30.092 (2)0.093 (2)0.117 (3)−0.0326 (19)−0.020 (2)0.009 (2)
C40.109 (3)0.075 (2)0.181 (4)−0.0087 (19)−0.027 (3)−0.033 (2)
C50.118 (3)0.107 (3)0.184 (4)0.008 (2)0.001 (3)−0.087 (3)
C60.0725 (19)0.098 (2)0.126 (3)0.0044 (15)0.0010 (19)−0.050 (2)
C70.0577 (12)0.0460 (11)0.0518 (12)−0.0002 (9)0.0055 (11)−0.0063 (10)
C80.0565 (12)0.0552 (12)0.0595 (12)−0.0069 (10)0.0015 (11)−0.0013 (11)
C90.0750 (15)0.0592 (13)0.0556 (13)−0.0098 (12)−0.0075 (12)0.0017 (12)
C100.0926 (18)0.0598 (13)0.0532 (13)−0.0039 (13)0.0102 (14)0.0022 (12)
C110.0671 (14)0.0712 (15)0.0679 (15)0.0016 (12)0.0192 (13)0.0048 (13)
C120.0578 (12)0.0658 (14)0.0663 (14)0.0007 (11)0.0094 (12)−0.0008 (13)
Cl10.0939 (5)0.1250 (7)0.0821 (5)−0.0306 (5)−0.0317 (4)0.0267 (5)
N10.0536 (10)0.0611 (10)0.0481 (10)0.0027 (8)0.0041 (9)−0.0041 (9)
O10.0762 (11)0.0904 (12)0.0470 (8)0.0010 (10)−0.0033 (8)−0.0001 (9)
O20.0467 (8)0.0850 (11)0.0717 (11)0.0016 (8)−0.0091 (8)−0.0047 (10)
S10.0492 (3)0.0659 (3)0.0499 (3)−0.0007 (2)−0.0058 (2)−0.0026 (3)

Geometric parameters (Å, °)

C1—C61.358 (4)C7—N11.438 (3)
C1—C21.378 (4)C8—C91.386 (3)
C1—S11.755 (2)C8—H80.93
C2—C31.382 (4)C9—C101.378 (4)
C2—H20.93C9—Cl11.731 (3)
C3—C41.339 (5)C10—C111.367 (4)
C3—H30.93C10—H100.93
C4—C51.353 (6)C11—C121.371 (4)
C4—H40.93C11—H110.93
C5—C61.394 (5)C12—H120.93
C5—H50.93N1—S11.623 (2)
C6—H60.93N1—H1N0.876 (10)
C7—C81.371 (3)O1—S11.4305 (17)
C7—C121.379 (3)O2—S11.4256 (17)
C6—C1—C2120.8 (3)C9—C8—H8120.7
C6—C1—S1120.3 (2)C10—C9—C8120.9 (2)
C2—C1—S1118.9 (2)C10—C9—Cl1120.41 (19)
C1—C2—C3119.0 (3)C8—C9—Cl1118.73 (19)
C1—C2—H2120.5C11—C10—C9119.3 (2)
C3—C2—H2120.5C11—C10—H10120.3
C4—C3—C2120.5 (3)C9—C10—H10120.3
C4—C3—H3119.8C10—C11—C12120.8 (2)
C2—C3—H3119.8C10—C11—H11119.6
C3—C4—C5120.6 (4)C12—C11—H11119.6
C3—C4—H4119.7C11—C12—C7119.6 (2)
C5—C4—H4119.7C11—C12—H12120.2
C4—C5—C6120.6 (4)C7—C12—H12120.2
C4—C5—H5119.7C7—N1—S1122.09 (15)
C6—C5—H5119.7C7—N1—H1N112.2 (16)
C1—C6—C5118.4 (3)S1—N1—H1N106.4 (17)
C1—C6—H6120.8O2—S1—O1119.45 (11)
C5—C6—H6120.8O2—S1—N1107.89 (11)
C8—C7—C12120.81 (19)O1—S1—N1104.81 (11)
C8—C7—N1118.6 (2)O2—S1—C1107.00 (12)
C12—C7—N1120.5 (2)O1—S1—C1108.81 (12)
C7—C8—C9118.7 (2)N1—S1—C1108.50 (10)
C7—C8—H8120.7
C6—C1—C2—C31.4 (4)C10—C11—C12—C70.7 (4)
S1—C1—C2—C3−177.7 (2)C8—C7—C12—C11−0.4 (4)
C1—C2—C3—C4−0.4 (5)N1—C7—C12—C11−176.9 (2)
C2—C3—C4—C50.3 (7)C8—C7—N1—S1115.6 (2)
C3—C4—C5—C6−1.2 (8)C12—C7—N1—S1−67.8 (3)
C2—C1—C6—C5−2.2 (5)C7—N1—S1—O255.5 (2)
S1—C1—C6—C5176.8 (3)C7—N1—S1—O1−176.22 (17)
C4—C5—C6—C12.1 (8)C7—N1—S1—C1−60.1 (2)
C12—C7—C8—C9−0.5 (3)C6—C1—S1—O2−13.9 (3)
N1—C7—C8—C9176.1 (2)C2—C1—S1—O2165.1 (2)
C7—C8—C9—C101.2 (3)C6—C1—S1—O1−144.3 (3)
C7—C8—C9—Cl1−178.94 (17)C2—C1—S1—O134.8 (2)
C8—C9—C10—C11−1.0 (4)C6—C1—S1—N1102.2 (3)
Cl1—C9—C10—C11179.2 (2)C2—C1—S1—N1−78.7 (2)
C9—C10—C11—C120.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.88 (1)2.029 (13)2.875 (2)162 (2)

Symmetry codes: (i) x−1/2, −y+1/2, −z+1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2659).

References

  • Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [PubMed]
  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1691. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1692. [PMC free article] [PubMed]
  • Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography