PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1838–o1839.
Published online 2008 August 30. doi:  10.1107/S1600536808027086
PMCID: PMC2960717

3-Ethyl-6-{1-[4-(2-methyl­prop­yl)phen­yl]eth­yl}-1,2,4-triazolo[3,4-b][1,3,4]thia­diazole

Abstract

In the mol­ecule of the title compound, C17H22N4S, the triazolothia­diazole ring system is essentially planar and forms a dihedral angle of 74.34 (6)° with the benzene ring. In the crystal structure, mol­ecules are linked into chains running along the b axis by C—H(...)π inter­actions; adjacent chains are cross-linked via C—H(...)N hydrogen bonds and short S(...)N contacts [3.2694 (14) and 3.2953 (14) Å].

Related literature

For a related structure, see: Fun et al. (2008 [triangle]). For biological activities of triazole and 1,3,4-thia­diazo­les, see: Al-Soud et al. (2004 [triangle]); Labanauskas et al. (2004 [triangle]); Mathew et al. (2006 [triangle]); Ragenovic et al. (2001 [triangle]). For pharmacological activities of thia­diazo­les, see: Karegoudar et al. (2008 [triangle]); Swamy et al. (2006 [triangle]); Wang et al. (1996 [triangle]). For the preparation, see: Bhalerao et al. (1994 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1838-scheme1.jpg

Experimental

Crystal data

  • C17H22N4S
  • M r = 314.45
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1838-efi1.jpg
  • a = 11.4341 (5) Å
  • b = 9.1939 (4) Å
  • c = 30.9870 (13) Å
  • V = 3257.5 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.20 mm−1
  • T = 100.0 (1) K
  • 0.44 × 0.09 × 0.05 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.917, T max = 0.990
  • 40117 measured reflections
  • 5793 independent reflections
  • 4079 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.135
  • S = 1.04
  • 5793 reflections
  • 203 parameters
  • H-atom parameters constrained
  • Δρmax = 0.60 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808027086/ci2662sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027086/ci2662Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. SKV and BK are grateful to Kerala State Council for Science, Technology and the Environment, Thiruvananthapuram, for financial assistance.

supplementary crystallographic information

Comment

1,2,4-Triazole and 1,3,4-thiadiazoles represent one of the most biologically active classes of compounds, possessing a wide spectrum of activities (Ragenovic et al., 2001; Al-Soud et al., 2004; Labanauskas et al., 2004). Various substituted 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and their analogues are associated with diverse pharmacological activities such as antimicrobial (Swamy et al., 2006), antibacterial (Wang et al., 1996), antitubercular, anti-inflammatory and antifungal (Karegoudar et al., 2008). A triazolo-thiadiazole system may be viewed as a cyclic analogue of two very important components viz. thiosemicarbazide and biguanide, which often display diverse biological activities (Mathew et al., 2006). The required 4-amino-3-mercapto-5-ethyl-1,2,4-triazole was prepared in good yield through multi step reaction by using the method of Reid and Heindel (Bhalerao et al., 1994). Phosphorous oxychloride was necessary for this condensation, which activate the carbonyl group of aromatic acids and increases its electrophilicity to enhance the addition of triazole to it. Previously, we have reported the crystal structure of a triazolo-thiadiazole system carrying ibuprofen moiety (Fun et al., 2008). In continuation of our work, we report here the crystal structure of the title compound.

Bond lengths in the title molecule have normal values (Allen et al., 1987). The triazolothiadiazole (S1/C1/N2/N1/C2/N3/N4/C3) ring system is essentially planar, with a maximium deviation of 0.013 (1) Å for atom S1. The dihedral angle between the triazolothiadiazole ring system and the benzene ring (C5–C10) is 74.34 (6)°.

The crystal packing is consolidated by weak C—H···π interactions (Table 1) involving the thiadiazole (S1/C1/N3/N4/C3, centroid Cg1), triazole (N1/N2/C1/N3/C2, centroid Cg2) and benzene (C5–C10, centroid Cg3) rings, and C—H···N hydrogen bonds. The C—H···π interactions link the molecules into chains running along the b axis. The adjacent chains are cross-linked via C—H···N hydrogen bonds (Table 1) and short S···N contacts [3.2694 (14) Å or 3.2953 (14) Å] (Fig. 2).

Experimental

A mixture of 4-amino-3-mercapto-5-ethyl-1,2,4-triazole (0.01 mol), 2-(4-isobutylphenyl)propanoic acid (0.01 mol) and POCl3 (10 ml) was refluxed in a water bath for 16 h. Excess POCl3 was removed under reduced pressure. The reaction mixture was cooled, poured into crushed ice, and neutralized with sodium bicarbonate solution. The resulting solid product was filtered off, washed with water, dried, and recrystallized from ethanol-dimethylformamide (1/1, v/v) (yield 49%; m.p. 369–371 K). Analysis (%) for C17H22N4S found (calculated): C 64.89 (64.96), H 6.97 (7.006), N 17.78 (17.83) S 10.11 (10.19).

Refinement

H atoms were positioned geometrically [C–H = 0.93-0.98 Å) and refined using a riding model, with Uiso(H) = 1.2-1.5Ueq (C). A rotating-group model was used for the methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.
Fig. 2.
The crystal packing of the title compound, viewed along the a axis. Short S···N contacts are shown as dashed lines.

Crystal data

C17H22N4SF000 = 1344
Mr = 314.45Dx = 1.282 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8453 reflections
a = 11.4341 (5) Åθ = 2.2–29.2º
b = 9.1939 (4) ŵ = 0.20 mm1
c = 30.9870 (13) ÅT = 100.0 (1) K
V = 3257.5 (2) Å3Needle, colourless
Z = 80.44 × 0.09 × 0.05 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer5793 independent reflections
Radiation source: fine-focus sealed tube4079 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.048
T = 100.0(1) Kθmax = 32.4º
[var phi] and ω scansθmin = 2.2º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −17→17
Tmin = 0.917, Tmax = 0.990k = −13→13
40117 measured reflectionsl = −40→46

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.135  w = 1/[σ2(Fo2) + (0.0517P)2 + 2.0837P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5793 reflectionsΔρmax = 0.60 e Å3
203 parametersΔρmin = −0.49 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.53939 (3)0.06763 (4)0.266708 (12)0.01935 (10)
N10.62584 (12)0.31200 (15)0.16919 (4)0.0209 (3)
N20.53144 (12)0.24935 (15)0.19196 (4)0.0213 (3)
N30.69861 (12)0.18920 (14)0.22283 (4)0.0175 (3)
N40.76251 (12)0.11936 (15)0.25470 (4)0.0193 (3)
C10.57968 (14)0.17716 (17)0.22372 (5)0.0186 (3)
C20.72430 (14)0.27501 (17)0.18787 (5)0.0186 (3)
C30.68928 (14)0.05296 (16)0.27988 (5)0.0179 (3)
C40.72469 (14)−0.03276 (17)0.31922 (5)0.0178 (3)
H4A0.6795−0.12330.31920.021*
C50.69098 (14)0.05277 (16)0.35984 (5)0.0182 (3)
C60.76816 (15)0.14778 (18)0.38014 (5)0.0206 (3)
H6A0.84390.15790.36960.025*
C70.73313 (15)0.22797 (18)0.41606 (5)0.0208 (3)
H7A0.78610.29060.42920.025*
C80.62023 (15)0.21602 (17)0.43254 (5)0.0194 (3)
C90.54403 (15)0.12017 (18)0.41213 (5)0.0204 (3)
H9A0.46830.10990.42260.025*
C100.57850 (15)0.03957 (17)0.37645 (5)0.0201 (3)
H10A0.5258−0.02400.36350.024*
C110.58366 (16)0.29969 (18)0.47213 (5)0.0222 (3)
H11A0.50670.34080.46710.027*
H11B0.63770.37980.47630.027*
C120.57973 (16)0.20868 (18)0.51362 (5)0.0225 (3)
H12A0.51740.13630.51050.027*
C130.69373 (19)0.1279 (2)0.52134 (6)0.0376 (5)
H13A0.68880.07470.54790.056*
H13B0.75690.19640.52300.056*
H13C0.70750.06140.49800.056*
C140.54985 (18)0.3048 (2)0.55214 (5)0.0309 (4)
H14A0.54530.24620.57770.046*
H14B0.47590.35150.54730.046*
H14C0.60950.37730.55570.046*
C150.85352 (14)−0.07336 (18)0.31744 (5)0.0214 (3)
H15A0.8690−0.12600.29130.032*
H15B0.8727−0.13310.34180.032*
H15C0.90020.01340.31810.032*
C160.84512 (15)0.31316 (19)0.17390 (5)0.0223 (3)
H16A0.88720.22470.16690.027*
H16B0.88560.36020.19760.027*
C170.84575 (17)0.4136 (2)0.13488 (6)0.0279 (4)
H17A0.92500.43640.12720.042*
H17B0.80460.50160.14170.042*
H17C0.80800.36620.11100.042*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.01693 (19)0.02416 (19)0.01697 (18)0.00140 (16)−0.00137 (14)0.00051 (14)
N10.0194 (7)0.0226 (6)0.0208 (6)0.0010 (6)−0.0020 (5)0.0008 (5)
N20.0206 (7)0.0228 (6)0.0204 (6)0.0003 (6)−0.0035 (5)0.0018 (5)
N30.0152 (6)0.0223 (6)0.0150 (6)0.0028 (5)−0.0032 (5)−0.0016 (5)
N40.0180 (7)0.0236 (6)0.0162 (6)0.0037 (5)−0.0028 (5)0.0004 (5)
C10.0173 (7)0.0207 (7)0.0179 (7)0.0010 (6)−0.0022 (6)−0.0016 (5)
C20.0201 (8)0.0202 (7)0.0156 (7)0.0018 (6)−0.0018 (6)−0.0014 (5)
C30.0170 (7)0.0216 (7)0.0152 (6)0.0025 (6)−0.0012 (5)−0.0031 (6)
C40.0157 (7)0.0203 (7)0.0174 (7)−0.0008 (6)−0.0005 (6)0.0007 (5)
C50.0177 (8)0.0213 (7)0.0156 (7)0.0016 (6)−0.0016 (6)0.0029 (6)
C60.0160 (8)0.0273 (8)0.0187 (7)−0.0008 (6)0.0009 (6)0.0040 (6)
C70.0206 (8)0.0243 (7)0.0176 (7)−0.0033 (6)−0.0021 (6)0.0005 (6)
C80.0213 (8)0.0211 (7)0.0159 (7)0.0011 (6)−0.0011 (6)0.0009 (6)
C90.0169 (8)0.0261 (7)0.0183 (7)−0.0009 (6)0.0000 (6)0.0000 (6)
C100.0199 (8)0.0231 (7)0.0173 (7)−0.0015 (6)−0.0019 (6)−0.0001 (6)
C110.0229 (8)0.0220 (7)0.0216 (7)0.0004 (7)−0.0003 (6)−0.0025 (6)
C120.0250 (8)0.0251 (7)0.0173 (7)−0.0009 (7)0.0011 (6)−0.0027 (6)
C130.0396 (12)0.0501 (12)0.0232 (9)0.0150 (10)−0.0006 (8)0.0033 (8)
C140.0390 (11)0.0327 (9)0.0209 (8)−0.0027 (8)0.0081 (7)−0.0058 (7)
C150.0191 (8)0.0254 (7)0.0197 (7)0.0004 (7)−0.0011 (6)0.0021 (6)
C160.0197 (8)0.0283 (8)0.0190 (7)−0.0001 (7)−0.0025 (6)0.0018 (6)
C170.0250 (9)0.0339 (9)0.0250 (8)−0.0023 (8)−0.0005 (7)0.0058 (7)

Geometric parameters (Å, °)

S1—C11.7323 (16)C9—H9A0.93
S1—C31.7669 (16)C10—H10A0.93
N1—C21.311 (2)C11—C121.535 (2)
N1—N21.412 (2)C11—H11A0.97
N2—C11.309 (2)C11—H11B0.97
N3—C11.365 (2)C12—C131.519 (3)
N3—C21.372 (2)C12—C141.524 (2)
N3—N41.3861 (17)C12—H12A0.98
N4—C31.297 (2)C13—H13A0.96
C2—C161.490 (2)C13—H13B0.96
C3—C41.507 (2)C13—H13C0.96
C4—C151.521 (2)C14—H14A0.96
C4—C51.533 (2)C14—H14B0.96
C4—H4A0.98C14—H14C0.96
C5—C101.391 (2)C15—H15A0.96
C5—C61.392 (2)C15—H15B0.96
C6—C71.394 (2)C15—H15C0.96
C6—H6A0.93C16—C171.522 (2)
C7—C81.393 (2)C16—H16A0.97
C7—H7A0.93C16—H16B0.97
C8—C91.391 (2)C17—H17A0.96
C8—C111.507 (2)C17—H17B0.96
C9—C101.388 (2)C17—H17C0.96
C1—S1—C387.95 (8)C8—C11—H11A108.7
C2—N1—N2109.27 (13)C12—C11—H11A108.7
C1—N2—N1105.09 (13)C8—C11—H11B108.7
C1—N3—C2106.02 (13)C12—C11—H11B108.7
C1—N3—N4118.26 (13)H11A—C11—H11B107.6
C2—N3—N4135.73 (14)C13—C12—C14110.66 (15)
C3—N4—N3107.84 (13)C13—C12—C11111.92 (15)
N2—C1—N3111.33 (14)C14—C12—C11110.27 (14)
N2—C1—S1139.54 (14)C13—C12—H12A108.0
N3—C1—S1109.12 (11)C14—C12—H12A108.0
N1—C2—N3108.30 (14)C11—C12—H12A108.0
N1—C2—C16127.38 (14)C12—C13—H13A109.5
N3—C2—C16124.30 (14)C12—C13—H13B109.5
N4—C3—C4124.01 (14)H13A—C13—H13B109.5
N4—C3—S1116.82 (12)C12—C13—H13C109.5
C4—C3—S1119.17 (12)H13A—C13—H13C109.5
C3—C4—C15111.06 (13)H13B—C13—H13C109.5
C3—C4—C5109.16 (12)C12—C14—H14A109.5
C15—C4—C5113.52 (13)C12—C14—H14B109.5
C3—C4—H4A107.6H14A—C14—H14B109.5
C15—C4—H4A107.6C12—C14—H14C109.5
C5—C4—H4A107.6H14A—C14—H14C109.5
C10—C5—C6118.29 (14)H14B—C14—H14C109.5
C10—C5—C4119.44 (14)C4—C15—H15A109.5
C6—C5—C4122.23 (14)C4—C15—H15B109.5
C5—C6—C7120.70 (15)H15A—C15—H15B109.5
C5—C6—H6A119.6C4—C15—H15C109.5
C7—C6—H6A119.6H15A—C15—H15C109.5
C8—C7—C6121.16 (15)H15B—C15—H15C109.5
C8—C7—H7A119.4C2—C16—C17112.23 (14)
C6—C7—H7A119.4C2—C16—H16A109.2
C9—C8—C7117.63 (14)C17—C16—H16A109.2
C9—C8—C11121.30 (15)C2—C16—H16B109.2
C7—C8—C11121.02 (15)C17—C16—H16B109.2
C10—C9—C8121.49 (15)H16A—C16—H16B107.9
C10—C9—H9A119.3C16—C17—H17A109.5
C8—C9—H9A119.3C16—C17—H17B109.5
C9—C10—C5120.72 (15)H17A—C17—H17B109.5
C9—C10—H10A119.6C16—C17—H17C109.5
C5—C10—H10A119.6H17A—C17—H17C109.5
C8—C11—C12114.32 (13)H17B—C17—H17C109.5
C2—N1—N2—C10.16 (17)N4—C3—C4—C5107.16 (17)
C1—N3—N4—C30.31 (18)S1—C3—C4—C5−72.12 (15)
C2—N3—N4—C3179.77 (16)C3—C4—C5—C1085.48 (17)
N1—N2—C1—N3−0.05 (17)C15—C4—C5—C10−150.03 (14)
N1—N2—C1—S1−178.90 (15)C3—C4—C5—C6−92.33 (17)
C2—N3—C1—N2−0.07 (17)C15—C4—C5—C632.2 (2)
N4—N3—C1—N2179.54 (13)C10—C5—C6—C7−0.3 (2)
C2—N3—C1—S1179.14 (10)C4—C5—C6—C7177.54 (14)
N4—N3—C1—S1−1.25 (17)C5—C6—C7—C8−0.3 (2)
C3—S1—C1—N2−179.82 (19)C6—C7—C8—C90.6 (2)
C3—S1—C1—N31.31 (11)C6—C7—C8—C11178.26 (15)
N2—N1—C2—N3−0.20 (17)C7—C8—C9—C10−0.4 (2)
N2—N1—C2—C16178.03 (15)C11—C8—C9—C10−178.00 (15)
C1—N3—C2—N10.17 (17)C8—C9—C10—C5−0.2 (2)
N4—N3—C2—N1−179.34 (15)C6—C5—C10—C90.6 (2)
C1—N3—C2—C16−178.13 (15)C4—C5—C10—C9−177.35 (14)
N4—N3—C2—C162.4 (3)C9—C8—C11—C1275.4 (2)
N3—N4—C3—C4−178.48 (13)C7—C8—C11—C12−102.21 (18)
N3—N4—C3—S10.82 (16)C8—C11—C12—C1352.6 (2)
C1—S1—C3—N4−1.30 (13)C8—C11—C12—C14176.26 (15)
C1—S1—C3—C4178.03 (12)N1—C2—C16—C173.7 (2)
N4—C3—C4—C15−18.7 (2)N3—C2—C16—C17−178.28 (14)
S1—C3—C4—C15161.97 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10A···N1i0.932.513.440 (2)177
C15—H15A···Cg1ii0.962.673.5090 (17)146
C16—H16B···Cg1iii0.972.933.6772 (18)135
C17—H17B···Cg2iii0.962.923.614 (2)130
C15—H15B···Cg3ii0.962.743.6335 (17)155

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x+1, −y−3/2, z−1/2; (iii) x+1, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2662).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Al-Soud, Y. A., Al-Dweri, M. N. & Al-Masoudi, N. A. (2004). Farmaco, 59, 775–783. [PubMed]
  • Bhalerao, U. T., Muralikrishna, C. & Rani, B. R. (1994). Tetrahedron, 50, 4019–4024.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fun, H.-K., Jebas, S. R., Razak, I. A., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1076–o1077. [PMC free article] [PubMed]
  • Karegoudar, P., Prasad, D. J., Ashok, M., Mahalinga, M., Poojary, B. & Holla, B. S. (2008). Eur. J. Med. Chem.43, 808–815. [PubMed]
  • Labanauskas, L., Udrenaite, E., Gaidelis, P. & Bruktus, A. (2004). Farmaco, 59, 255–259. [PubMed]
  • Mathew, V., Keshavayya, J. & Vaidya, V. P. (2006). Eur. J. Med. Chem.41, 1048–1058. [PubMed]
  • Ragenovic, K. C., Dimova, V., Kakurinov, V., Labor, D. & Molnar, A. B. (2001). Molecules, 6, 815–824.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Swamy, S. N., Basappa, B. S., Prabhuswamy, P. B., Doreswamy, B. H., Prasad, J. S. & Rangappa, K. S. (2006). Eur. J. Med. Chem.41, 531–538. [PubMed]
  • Wang, Z., You, T., Xu, Y., Haijian, S. & Haoxin, S. (1996). Molecules, 1, 68–71.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography