PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1201–m1202.
Published online 2008 August 23. doi:  10.1107/S1600536808026469
PMCID: PMC2960715

catena-Poly[[[(1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydro­quinoline-3-carboxyl­ato-κ2 O 3,O 4)copper(II)]-μ-1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydro­quinoline-3-carboxyl­ato-κ3 N 7′:O 3,O 4] tetra­hydrate]

Abstract

In the title compound, {[Cu(C16H17FN3O3)2]·4H2O}n, the CuII atom is bonded to two O,O′-bidentate 1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydro­quinoline-3-carboxyl­ate (norf) monoanions and a symmetry-generated N-bonded norf anion, resulting in a distorted square-pyramidal coordination environ­ment with the N atom occupying the apical site. The bridging norf anion results in one-dimensional chains propogating along [010]. A network of O—H(...)O and N—H(...)O hydrogen bonds helps to establish the crystal structure.

Related literature

For the iron, zinc and cobalt complexes of the norf anion, see: Chen et al. (2001 [triangle]); Qu et al. (2003 [triangle]); An et al. (2007 [triangle]). For background on the medicinal uses of Hnorf, see: Mizuki et al. (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1201-scheme1.jpg

Experimental

Crystal data

  • [Cu(C16H17FN3O3)2]·4H2O
  • M r = 772.26
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1201-efi1.jpg
  • a = 10.023 (2) Å
  • b = 11.708 (2) Å
  • c = 16.219 (3) Å
  • α = 97.22 (3)°
  • β = 107.05 (3)°
  • γ = 105.00 (3)°
  • V = 1715.2 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.71 mm−1
  • T = 296 (2) K
  • 0.43 × 0.28 × 0.22 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.749, T max = 0.859
  • 13404 measured reflections
  • 5960 independent reflections
  • 4481 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.191
  • S = 1.00
  • 5960 reflections
  • 492 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.90 e Å−3
  • Δρmin = −0.72 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808026469/hb2782sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026469/hb2782Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for financial support from the Natural Science Foundation of Heilongjiang Province (D200672).

supplementary crystallographic information

Comment

Norfloxacin (H-Norf,1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7- (1-piperazinyl)-3-quinoline carboxylic acid) is member of the class of quinolones that is used to treat infections (Mizuki et al. 1996). The zinc(II), iron(II) and cobalt(II) derivatives of norf have been reported (Chen. et al., 2001; Qu et al. 2003; An et al., 2007).

The title copper(II) derivative, (I), a one-dimensional coordination polymer in which the anion acts in a bridging mode, is reported here (Fig. 1).

The Cu(II) atom is coordinated (Table 1) by four oxygen atoms and one N atoms from three norfloxacin ligands (one monodentate-N and two O,O-bidentate) to form a one-dimensional coordination polymer (Fig. 2). A network of O—H···O and N—H···O hydrogen bonds (Table 2) helps to establish the packing.

Experimental

A mixture of Cu(CH3COO)2.H2O (0.05 g, 0.25 mmol), Hnorf( 0.16 g, 0.50 mmol), sodium hydroxide (0.02 g, 0.50 mmol) and water (12 ml) was stirred for 20 min in air. The mixture was then transferred to a 23 ml Teflon-lined hydrothermal bomb. The bomb was kept at 443 K for 96 h under autogenous pressure. After cooling, blue blocks of (I) were obtained from the reaction mixture.

Refinement

The N- and O-bonded H atoms were located in difference maps and their positions were freely refined with a fixed Uiso value. This has led to some very short H···H intermolecular contacts and the positions of these H atoms should be regarded as less certain.

All the C-bonded H atoms were placed in calculated positions with C—H = 0.93Å and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Figures

Fig. 1.
The asymmetric unit of (I), expanded to show the coordination of the Cu atom, drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms (arbitrary spheres for the H atoms). Symmetry code: (i) x, 1-y, z.
Fig. 2.
Part of the chain structure of (I).

Crystal data

[Cu(C16H17FN3O3)2]·4H2OZ = 2
Mr = 772.26F000 = 806
Triclinic, P1Dx = 1.495 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 10.023 (2) ÅCell parameters from 5960 reflections
b = 11.708 (2) Åθ = 3.1–25.1º
c = 16.219 (3) ŵ = 0.71 mm1
α = 97.22 (3)ºT = 296 (2) K
β = 107.05 (3)ºBlock, blue
γ = 105.00 (3)º0.43 × 0.28 × 0.22 mm
V = 1715.2 (6) Å3

Data collection

Bruker APEXII CCD diffractometer5960 independent reflections
Radiation source: fine-focus sealed tube4481 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.028
T = 296(2) Kθmax = 25.1º
ω scansθmin = 3.1º
Absorption correction: multi-scan(SADABS; Bruker, 2004)h = −11→11
Tmin = 0.749, Tmax = 0.859k = −13→13
13404 measured reflectionsl = −19→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap and geom
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.191  w = 1/[σ2(Fo2) + (0.136P)2 + 1.0468P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
5960 reflectionsΔρmax = 1.90 e Å3
492 parametersΔρmin = −0.72 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.90729 (5)0.04270 (4)0.21869 (3)0.0338 (2)
C10.6975 (4)0.0019 (4)0.3152 (3)0.0439 (10)
C20.7856 (4)−0.0629 (3)0.3706 (3)0.0373 (9)
C30.9119 (4)−0.0878 (3)0.3593 (3)0.0342 (8)
C40.9788 (4)−0.1560 (3)0.4170 (3)0.0362 (9)
C51.0984 (5)−0.1904 (4)0.4073 (3)0.0436 (10)
H51.1368−0.16690.36420.052*
C61.1580 (5)−0.2569 (5)0.4601 (3)0.0524 (11)
C71.1120 (5)−0.2918 (4)0.5307 (3)0.0442 (10)
C80.9952 (5)−0.2557 (4)0.5407 (3)0.0408 (9)
H80.9617−0.27480.58660.049*
C90.9262 (4)−0.1917 (4)0.4842 (3)0.0377 (9)
C100.7405 (4)−0.1000 (4)0.4376 (3)0.0424 (10)
H100.6590−0.08190.44480.051*
C110.7415 (5)−0.1957 (5)0.5614 (3)0.0532 (12)
H11A0.6805−0.14590.56930.064*
H11B0.8203−0.18010.61720.064*
C120.6511 (7)−0.3266 (6)0.5376 (5)0.0801 (18)
H12A0.5717−0.34220.48300.120*
H12B0.6122−0.34520.58350.120*
H12C0.7115−0.37630.53090.120*
C131.3388 (5)−0.3119 (5)0.6269 (4)0.0571 (12)
H13A1.3626−0.24250.67420.068*
H13B1.3845−0.28510.58470.068*
C141.3980 (6)−0.4084 (5)0.6642 (3)0.0574 (12)
H14A1.3819−0.47390.61570.069*
H14B1.5031−0.37380.69440.069*
C151.1717 (6)−0.5018 (5)0.6819 (4)0.0594 (13)
H15A1.1267−0.52910.72440.071*
H15B1.1474−0.57150.63480.071*
C161.1055 (6)−0.4098 (4)0.6437 (3)0.0505 (11)
H16A1.0011−0.44760.61240.061*
H16B1.1180−0.34420.69100.061*
C171.1846 (4)0.1672 (4)0.1965 (3)0.0349 (9)
C181.1248 (4)0.2682 (3)0.1721 (2)0.0320 (8)
C190.9742 (4)0.2613 (3)0.1532 (3)0.0327 (8)
C200.9356 (4)0.3645 (3)0.1262 (3)0.0319 (8)
C210.7879 (4)0.3613 (3)0.1007 (3)0.0338 (9)
H210.71490.29120.09730.041*
C220.7527 (4)0.4610 (3)0.0811 (3)0.0362 (9)
C230.8575 (4)0.5732 (3)0.0900 (3)0.0333 (8)
C241.0026 (4)0.5748 (3)0.1113 (3)0.0351 (9)
H241.07490.64560.11520.042*
C251.0414 (4)0.4703 (3)0.1269 (3)0.0331 (8)
C261.2212 (4)0.3712 (4)0.1661 (3)0.0383 (9)
H261.31800.37260.17670.046*
C271.3780 (7)0.6550 (5)0.2444 (5)0.0809 (19)
H27A1.30500.68090.26180.121*
H27B1.45520.72470.24590.121*
H27C1.41790.60880.28440.121*
C281.3088 (5)0.5775 (4)0.1518 (4)0.0493 (11)
H28A1.27170.62520.11120.059*
H28B1.38260.55110.13440.059*
C290.7251 (5)0.7081 (4)0.1276 (3)0.0423 (10)
H29A0.78850.74240.18850.051*
H29B0.64950.63620.12650.051*
C300.6551 (5)0.7987 (4)0.0915 (4)0.0526 (12)
H30A0.58730.76270.03170.063*
H30B0.60010.82120.12750.063*
C310.8498 (5)0.8720 (4)0.0359 (3)0.0469 (11)
H31A0.92400.94300.03440.056*
H31B0.78290.8360−0.02400.056*
C320.9225 (5)0.7818 (3)0.0719 (3)0.0387 (9)
H32A0.97560.75890.03480.046*
H32B0.99230.81880.13100.046*
F11.2644 (4)−0.2977 (4)0.4433 (2)0.0794 (11)
F20.6077 (2)0.4524 (2)0.05141 (19)0.0529 (7)
N10.8050 (4)−0.1605 (3)0.4935 (2)0.0412 (8)
N21.1767 (4)−0.3611 (4)0.5827 (3)0.0474 (9)
N31.3301 (5)−0.4575 (4)0.7252 (3)0.0611 (11)
H3B1.3751 (17)−0.441 (4)0.7842 (7)0.073*
N41.1867 (3)0.4699 (3)0.1462 (2)0.0366 (7)
N50.8124 (4)0.6743 (3)0.0745 (2)0.0372 (8)
N60.7690 (4)0.9081 (3)0.0911 (2)0.0392 (8)
H6A0.723 (3)0.9747 (16)0.069 (3)0.047*
O10.7412 (3)0.0469 (3)0.2558 (2)0.0474 (7)
O20.5865 (4)0.0120 (4)0.3291 (3)0.0752 (12)
O30.9694 (3)−0.0539 (3)0.3021 (2)0.0424 (7)
O41.1027 (3)0.0746 (2)0.2105 (2)0.0403 (7)
O50.8753 (3)0.1742 (2)0.1603 (2)0.0419 (7)
O61.3139 (3)0.1796 (3)0.2032 (3)0.0584 (9)
O1W0.4376 (13)0.9606 (8)0.0102 (6)0.182 (4)
O2W0.2803 (6)0.9249 (5)0.2713 (5)0.122 (2)
O3W0.5350 (6)0.1403 (7)0.1444 (4)0.109 (2)
O4W0.2705 (8)0.8303 (7)0.0935 (7)0.143 (3)
H1W0.365 (9)0.903 (8)0.006 (7)0.171*
H2W0.473 (12)1.008 (9)0.059 (4)0.171*
H3W0.309 (13)0.974 (7)0.319 (4)0.171*
H4W0.240 (11)0.855 (3)0.274 (6)0.171*
H5W0.472 (9)0.069 (4)0.138 (8)0.171*
H6W0.615 (5)0.143 (8)0.180 (6)0.171*
H7W0.351 (6)0.819 (10)0.100 (9)0.171*
H8W0.265 (11)0.888 (6)0.062 (8)0.171*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0306 (3)0.0301 (3)0.0431 (3)0.0152 (2)0.0094 (2)0.0124 (2)
C10.030 (2)0.045 (2)0.061 (3)0.0190 (18)0.0139 (19)0.016 (2)
C20.0310 (19)0.0345 (19)0.046 (2)0.0103 (16)0.0122 (17)0.0070 (17)
C30.0313 (18)0.0358 (19)0.035 (2)0.0104 (16)0.0111 (16)0.0074 (16)
C40.0335 (19)0.0365 (19)0.037 (2)0.0114 (17)0.0093 (16)0.0087 (16)
C50.044 (2)0.059 (3)0.041 (2)0.029 (2)0.0185 (18)0.022 (2)
C60.055 (3)0.071 (3)0.049 (3)0.037 (2)0.024 (2)0.026 (2)
C70.045 (2)0.054 (2)0.037 (2)0.021 (2)0.0110 (18)0.0162 (19)
C80.044 (2)0.046 (2)0.033 (2)0.0144 (19)0.0133 (17)0.0109 (17)
C90.038 (2)0.041 (2)0.033 (2)0.0136 (18)0.0114 (16)0.0066 (16)
C100.036 (2)0.043 (2)0.051 (3)0.0161 (18)0.0178 (19)0.0069 (19)
C110.055 (3)0.076 (3)0.043 (3)0.032 (3)0.026 (2)0.021 (2)
C120.066 (3)0.095 (4)0.082 (4)0.009 (3)0.036 (3)0.034 (4)
C130.054 (3)0.068 (3)0.055 (3)0.027 (2)0.014 (2)0.028 (2)
C140.061 (3)0.074 (3)0.044 (3)0.038 (3)0.012 (2)0.020 (2)
C150.077 (3)0.050 (3)0.051 (3)0.020 (3)0.017 (2)0.024 (2)
C160.061 (3)0.054 (3)0.043 (3)0.021 (2)0.020 (2)0.020 (2)
C170.0322 (19)0.040 (2)0.038 (2)0.0190 (17)0.0122 (16)0.0118 (16)
C180.0323 (18)0.0334 (18)0.032 (2)0.0159 (16)0.0085 (15)0.0082 (15)
C190.0359 (19)0.0289 (18)0.035 (2)0.0141 (16)0.0102 (16)0.0081 (15)
C200.0317 (18)0.0259 (17)0.035 (2)0.0099 (15)0.0067 (15)0.0056 (15)
C210.0264 (17)0.0283 (17)0.041 (2)0.0076 (15)0.0035 (15)0.0086 (15)
C220.0276 (18)0.0297 (18)0.047 (2)0.0131 (16)0.0036 (16)0.0061 (16)
C230.0366 (19)0.0266 (17)0.034 (2)0.0124 (16)0.0062 (16)0.0065 (15)
C240.036 (2)0.0296 (18)0.039 (2)0.0080 (16)0.0124 (16)0.0115 (16)
C250.0346 (19)0.0308 (18)0.033 (2)0.0119 (16)0.0090 (15)0.0082 (15)
C260.0303 (19)0.044 (2)0.045 (2)0.0176 (17)0.0122 (17)0.0162 (18)
C270.062 (3)0.056 (3)0.092 (5)−0.004 (3)−0.002 (3)0.017 (3)
C280.036 (2)0.043 (2)0.075 (3)0.0081 (19)0.027 (2)0.024 (2)
C290.040 (2)0.0281 (18)0.063 (3)0.0105 (17)0.023 (2)0.0081 (18)
C300.040 (2)0.029 (2)0.078 (4)0.0104 (19)0.009 (2)0.000 (2)
C310.069 (3)0.0309 (19)0.042 (2)0.018 (2)0.015 (2)0.0146 (17)
C320.047 (2)0.0285 (18)0.047 (2)0.0160 (17)0.0207 (19)0.0135 (17)
F10.090 (2)0.135 (3)0.077 (2)0.090 (2)0.0545 (19)0.067 (2)
F20.0305 (12)0.0325 (12)0.0806 (19)0.0100 (10)−0.0026 (11)0.0106 (11)
N10.0374 (17)0.0491 (19)0.040 (2)0.0172 (16)0.0145 (15)0.0094 (16)
N20.051 (2)0.056 (2)0.042 (2)0.0260 (18)0.0144 (16)0.0198 (17)
N30.079 (3)0.065 (3)0.042 (2)0.034 (2)0.009 (2)0.022 (2)
N40.0315 (16)0.0362 (17)0.046 (2)0.0113 (14)0.0156 (14)0.0152 (14)
N50.0391 (17)0.0275 (15)0.046 (2)0.0146 (14)0.0110 (15)0.0127 (14)
N60.0406 (18)0.0275 (15)0.045 (2)0.0171 (14)0.0038 (15)0.0051 (14)
O10.0407 (15)0.0597 (18)0.0563 (19)0.0306 (14)0.0186 (14)0.0269 (15)
O20.051 (2)0.101 (3)0.114 (3)0.048 (2)0.048 (2)0.062 (3)
O30.0378 (14)0.0530 (17)0.0492 (18)0.0261 (13)0.0171 (13)0.0252 (14)
O40.0361 (14)0.0392 (15)0.0574 (19)0.0239 (12)0.0182 (13)0.0205 (13)
O50.0308 (13)0.0289 (13)0.066 (2)0.0114 (12)0.0099 (13)0.0200 (13)
O60.0397 (17)0.059 (2)0.094 (3)0.0287 (15)0.0296 (17)0.0359 (18)
O1W0.235 (12)0.129 (7)0.141 (7)0.008 (6)0.044 (8)0.040 (5)
O2W0.065 (3)0.095 (3)0.243 (8)0.049 (3)0.060 (4)0.094 (4)
O3W0.090 (3)0.208 (6)0.083 (3)0.101 (4)0.045 (3)0.068 (4)
O4W0.130 (5)0.110 (5)0.187 (8)0.020 (4)0.073 (6)0.018 (5)

Geometric parameters (Å, °)

Cu1—O31.936 (3)C18—C191.428 (5)
Cu1—O11.939 (3)C19—O51.268 (5)
Cu1—O41.944 (3)C19—C201.441 (5)
Cu1—O51.953 (3)C20—C251.404 (5)
Cu1—N6i2.248 (3)C20—C211.405 (5)
C1—O21.229 (6)C21—C221.352 (5)
C1—O11.285 (6)C21—H210.9300
C1—C21.489 (6)C22—F21.362 (4)
C2—C101.371 (6)C22—C231.414 (6)
C2—C31.426 (6)C23—C241.388 (6)
C3—O31.281 (5)C23—N51.398 (5)
C3—C41.435 (6)C24—C251.406 (5)
C4—C51.403 (6)C24—H240.9300
C4—C91.406 (6)C25—N41.398 (5)
C5—C61.344 (6)C26—N41.340 (5)
C5—H50.9300C26—H260.9300
C6—F11.357 (6)C27—C281.511 (8)
C6—C71.420 (7)C27—H27A0.9600
C7—C81.388 (6)C27—H27B0.9600
C7—N21.384 (6)C27—H27C0.9600
C8—C91.396 (6)C28—N41.483 (5)
C8—H80.9300C28—H28A0.9700
C9—N11.398 (5)C28—H28B0.9700
C10—N11.341 (6)C29—N51.481 (6)
C10—H100.9300C29—C301.505 (6)
C11—N11.475 (6)C29—H29A0.9700
C11—C121.499 (8)C29—H29B0.9700
C11—H11A0.9700C30—N61.481 (5)
C11—H11B0.9700C30—H30A0.9700
C12—H12A0.9600C30—H30B0.9700
C12—H12B0.9600C31—N61.464 (6)
C12—H12C0.9600C31—C321.513 (6)
C13—N21.488 (6)C31—H31A0.9700
C13—C141.517 (7)C31—H31B0.9700
C13—H13A0.9700C32—N51.458 (5)
C13—H13B0.9700C32—H32A0.9700
C14—N31.452 (7)C32—H32B0.9700
C14—H14A0.9700N3—H3B0.900 (8)
C14—H14B0.9700N6—Cu1ii2.248 (3)
C15—N31.454 (7)N6—H6A1.05 (2)
C15—C161.511 (7)O1W—O1Wiii1.500 (18)
C15—H15A0.9700O1W—H1W0.83 (9)
C15—H15B0.9700O1W—H2W0.83 (8)
C16—N21.469 (6)O2W—H3W0.83 (7)
C16—H16A0.9700O2W—H4W0.83 (4)
C16—H16B0.9700O3W—H5W0.88 (3)
C17—O61.236 (5)O3W—H6W0.83 (8)
C17—O41.270 (5)O4W—H7W0.83 (8)
C17—C181.503 (5)O4W—H8W0.90 (9)
C18—C261.369 (6)
O3—Cu1—O192.22 (13)C21—C20—C19119.3 (3)
O3—Cu1—O485.49 (12)C22—C21—C20119.4 (3)
O1—Cu1—O4164.06 (13)C22—C21—H21120.3
O3—Cu1—O5165.39 (13)C20—C21—H21120.3
O1—Cu1—O587.15 (13)C21—C22—F2117.8 (3)
O4—Cu1—O591.12 (12)C21—C22—C23123.8 (3)
O3—Cu1—N6i105.05 (13)F2—C22—C23118.4 (3)
O1—Cu1—N6i94.09 (14)C24—C23—N5123.3 (3)
O4—Cu1—N6i101.75 (14)C24—C23—C22116.5 (3)
O5—Cu1—N6i89.55 (13)N5—C23—C22120.1 (3)
O2—C1—O1122.4 (4)C23—C24—C25120.6 (4)
O2—C1—C2118.5 (4)C23—C24—H24119.7
O1—C1—C2119.1 (4)C25—C24—H24119.7
C10—C2—C3118.6 (4)N4—C25—C20118.1 (3)
C10—C2—C1116.4 (4)N4—C25—C24121.2 (3)
C3—C2—C1125.1 (4)C20—C25—C24120.7 (3)
O3—C3—C2125.0 (4)N4—C26—C18125.0 (4)
O3—C3—C4118.1 (4)N4—C26—H26117.5
C2—C3—C4117.0 (4)C18—C26—H26117.5
C5—C4—C9117.8 (4)C28—C27—H27A109.5
C5—C4—C3120.8 (4)C28—C27—H27B109.5
C9—C4—C3121.4 (4)H27A—C27—H27B109.5
C6—C5—C4120.4 (4)C28—C27—H27C109.5
C6—C5—H5119.8H27A—C27—H27C109.5
C4—C5—H5119.8H27B—C27—H27C109.5
C5—C6—F1118.4 (4)N4—C28—C27111.2 (4)
C5—C6—C7123.9 (4)N4—C28—H28A109.4
F1—C6—C7117.6 (4)C27—C28—H28A109.4
C8—C7—N2123.2 (4)N4—C28—H28B109.4
C8—C7—C6115.3 (4)C27—C28—H28B109.4
N2—C7—C6121.4 (4)H28A—C28—H28B108.0
C7—C8—C9122.2 (4)N5—C29—C30110.5 (4)
C7—C8—H8118.9N5—C29—H29A109.5
C9—C8—H8118.9C30—C29—H29A109.6
C8—C9—N1121.1 (4)N5—C29—H29B109.5
C8—C9—C4120.3 (4)C30—C29—H29B109.5
N1—C9—C4118.5 (4)H29A—C29—H29B108.1
N1—C10—C2124.8 (4)N6—C30—C29110.2 (3)
N1—C10—H10117.6N6—C30—H30A109.6
C2—C10—H10117.6C29—C30—H30A109.6
N1—C11—C12112.5 (4)N6—C30—H30B109.6
N1—C11—H11A109.1C29—C30—H30B109.6
C12—C11—H11A109.1H30A—C30—H30B108.1
N1—C11—H11B109.1N6—C31—C32110.6 (4)
C12—C11—H11B109.1N6—C31—H31A109.5
H11A—C11—H11B107.8C32—C31—H31A109.5
C11—C12—H12A109.5N6—C31—H31B109.5
C11—C12—H12B109.5C32—C31—H31B109.5
H12A—C12—H12B109.5H31A—C31—H31B108.1
C11—C12—H12C109.5N5—C32—C31110.2 (3)
H12A—C12—H12C109.5N5—C32—H32A109.6
H12B—C12—H12C109.5C31—C32—H32A109.6
N2—C13—C14110.1 (4)N5—C32—H32B109.6
N2—C13—H13A109.6C31—C32—H32B109.6
C14—C13—H13A109.6H32A—C32—H32B108.1
N2—C13—H13B109.6C10—N1—C9119.6 (4)
C14—C13—H13B109.6C10—N1—C11118.2 (4)
H13A—C13—H13B108.1C9—N1—C11122.1 (4)
N3—C14—C13113.2 (4)C7—N2—C16117.2 (4)
N3—C14—H14A109.0C7—N2—C13116.2 (4)
C13—C14—H14A109.0C16—N2—C13110.8 (4)
N3—C14—H14B108.9C14—N3—C15109.1 (4)
C13—C14—H14B108.9C14—N3—H3B124.2 (12)
H14A—C14—H14B107.8C15—N3—H3B123.9 (12)
N3—C15—C16114.5 (4)C26—N4—C25119.5 (3)
N3—C15—H15A108.6C26—N4—C28117.4 (3)
C16—C15—H15A108.6C25—N4—C28123.0 (3)
N3—C15—H15B108.6C23—N5—C32117.2 (3)
C16—C15—H15B108.6C23—N5—C29115.6 (3)
H15A—C15—H15B107.6C32—N5—C29110.5 (3)
N2—C16—C15110.3 (4)C31—N6—C30108.5 (3)
N2—C16—H16A109.6C31—N6—Cu1ii115.4 (3)
C15—C16—H16A109.6C30—N6—Cu1ii119.5 (3)
N2—C16—H16B109.6C31—N6—H6A111.7 (13)
C15—C16—H16B109.6C30—N6—H6A111.6 (13)
H16A—C16—H16B108.1Cu1ii—N6—H6A89 (2)
O6—C17—O4122.8 (4)C1—O1—Cu1131.2 (3)
O6—C17—C18117.7 (4)C3—O3—Cu1127.2 (3)
O4—C17—C18119.6 (3)C17—O4—Cu1130.5 (2)
C26—C18—C19118.9 (3)C19—O5—Cu1126.1 (2)
C26—C18—C17117.4 (3)O1Wiii—O1W—H1W161 (7)
C19—C18—C17123.7 (3)O1Wiii—O1W—H2W85 (7)
O5—C19—C18125.4 (3)H1W—O1W—H2W113 (10)
O5—C19—C20118.8 (3)H3W—O2W—H4W113 (8)
C18—C19—C20115.8 (3)H5W—O3W—H6W108 (9)
C25—C20—C21118.4 (3)H7W—O4W—H8W108 (11)
C25—C20—C19122.2 (3)

Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z; (iii) −x+1, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···O4W0.83 (9)2.08 (10)2.735 (14)136 (10)
O1W—H2W···O3Wii0.83 (8)1.78 (8)2.580 (11)163 (11)
O3W—H5W···O1Wi0.88 (6)2.17 (11)2.580 (11)108 (9)
O3W—H6W···O10.83 (8)2.13 (8)2.865 (8)147 (9)
O4W—H8W···O1W0.90 (9)2.17 (11)2.735 (14)121 (10)
N6—H6A···O1Wiii1.05 (3)2.12 (4)3.105 (12)155 (3)

Symmetry codes: (ii) x, y+1, z; (i) x, y−1, z; (iii) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2782).

References

  • An, Z., Xu, W. & Wang, R.-S. (2007). Acta Cryst. E63, m507–m508.
  • Bruker (2004). APEX2, SADABS and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, Z.-F., Xiong, R.-G., Zhang, J., Chen, X.-T., Xue, Z.-L. & You, X.-Z. (2001). Inorg. Chem.40, 4075–4077. [PubMed]
  • Mizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother.37, Suppl. A, 41–45. [PubMed]
  • Qu, Z.-R., Zhao, H., Xing, L.-X., Wang, X.-S., Chen, Z.-F., Yu, Z., Xiong, R.-G. & You, X.-Z. (2003). Eur. J. Inorg. Chem. pp. 2920–2923.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography