PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1673–o1674.
Published online 2008 August 6. doi:  10.1107/S1600536808024239
PMCID: PMC2960714

4-[(3-Formyl-4-hydroxy­phen­yl)diazen­yl]-N-(pyrimidin-2-yl)benzene­sulfonamide

Abstract

The title mol­ecule, C17H13N5O4S, has a trans configuration with respect to the diazenyl (azo) group. The pyrimidine ring and the terminal benzene ring are inclined at angles of 89.38 (4) and 1.6 (6)°, respectively, with respect to the central benzene ring. The conformation of the mol­ecule is in part stabilized by an intra­molecular O—H(...)O hydrogen bond. In the crystal structure, mol­ecules related through inversion centers form hydrogen-bonded dimers involving the sulfon­amide N—H group and the N atom of the pyrimidine ring.

Related literature

For related literature, see: Gaber et al. (2008 [triangle] and references therein); Kakoti et al. (1993 [triangle]); La Roche & Co (1967a,b); Misra et al. (1998 [triangle]); Mubarak et al. (2007 [triangle]); Nagaraja et al. (2002 [triangle]); Santra & Lahiri (1997 [triangle]); Vaichulis (1977 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1673-scheme1.jpg

Experimental

Crystal data

  • C17H13N5O4S
  • M r = 383.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1673-efi1.jpg
  • a = 18.579 (2) Å
  • b = 5.7731 (7) Å
  • c = 17.372 (2) Å
  • β = 115.99 (1)°
  • V = 1674.73 Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 100 (2) K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.934, T max = 0.977
  • 17304 measured reflections
  • 3560 independent reflections
  • 3277 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.097
  • S = 1.05
  • 3560 reflections
  • 245 parameters
  • H-atom parameters constrained
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: KENX (Sakai, 2004 [triangle]); software used to prepare material for publication: SHELXL97, TEXSAN (Molecular Structure Corporation, 2001 [triangle]), KENX and ORTEPII (Johnson, 1976 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808024239/lh2668sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024239/lh2668Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Grant-in-Aid for Specially Promoted Research (No. 18002016) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. HE acknowledges the Egyptian Channel System for financial support to promote the joint research project between Tanta and Kyushu Universities.

supplementary crystallographic information

Comment

Sulfa-drugs are widely used in the treatment of infections, especially for patients intolerant to antibiotics (Nagaraja et al., 2002). The vast commercial success of these medical agents has made the chemistry of sulfonamides become a major area of research and an important branch of commercial importance in pharmaceutical sciences (Nagaraja et al., 2002). Heterocyclic azo compounds are also considered very important class of compounds. The importance of these compounds may stem from its biological activity and analytical investigations (Gaber et al., 2008). Also, it is well known that heterocyclic azo compounds have been used to establish the low oxidation states of different metal ions (Kakoti et al., 1993; Santra & Lahiri, 1997; Misra et al., 1998). What appears more important is that sulfonamide and azo-sulfonamide derivatives have been found to be biologically versatile anticancer (La Roche & Co, 1967a,b) and antitubercular (Vaichulis, 1977) drugs.

In the title compound (I), C17H13N5O4S, the two aromatic groups attached to the azo double bond are oriented in a trans fashion. All the bond lengths are found to be within the normal values (Allen et al., 1987). An intramolecular hydrogen bond is formed between the O—H (hydroxyl) group and the oxygen atom of the carbonyl group (O2—H1···O1; Table 1), stabilizing the coformation of the molecule. Moreover, the molecule is further correlated with an adjacent molecule through an inversion center, where the intermolecular interaction is stabilized with two hydrogen bonds formed between the NH(sulfonamide) group and the nitrogen atom of pyrimidine ring, N3—H···N5i hydrogen bond [symmetry code: (i) 1 - x, 2 - y, 1 - z] (see Fig. 2 and Table 1). There is an unusually short intermolecular contact between the C (carbonyl) and the O (sulfonamide) atoms, i.e., C1···O3ii = 2.91 (2) Å [symmetry code: (ii) 2 - x, 1/2 + y, 3/2 - z]. Although the rotation about the C10—S1 bond axis is essentially allowed, the rotation at this geometry is fixed as a result of strong intermolecular hydrogen bonds formed at the peripheral pyrimidine attached to the sulfonamide unit. This must be the major cause of the short contact found for one of the sulfonamide oxygen atoms, i.e., O3.

The pyrimidine ring and both the central and terminal benzene rings are found to have a planar geometry (r.m.s deviations are 0.0136, 0.0106 and 0.0225 Å, respectively). Both the pyrimidine and the terminal phenyl rings are canted with respect to the central phenyl ring at angle of 89.38 (4) and 1.6 (6)°, respectively.

Experimental

Compound (I) was prepared by the previously reported method in the literature (Mubarak et al., 2007) in which 2.5 g m (0.01 mol) of sulfadiazine was dissolved in 25 ml of distilled water containing 2.5 ml (12M, 2.5 ml, 0.03 mol) of conc. HCl. The resulting solution was then cooled under stirring to 273 K. A cold solution containing 0.69 g m (0.01 mol) of sodium nitrite was drop wisely added to the previous solution to form the diazonium chloride. This solution was then added to a solution containing 1.06 ml of salicylaldehyde (0.01 mol) dissolved in 10 ml of water containing 0.4 g m (0.01 mol) of NaOH. The orange dye, which separated out, was kept in an ice bath under stirring for 30 minutes. The precipitate was then filtered off, washed by distilled water, and finally air_dried (yield: 80%). Analysis calculated for C17H13N5O4S: C, 53.26; H, 3.39; N, 18.27; S, 8.35% found: C, 53.44; H, 3.34; N, 18.38; S, 8.25%. IR (ν, cm-1): 3424(w), 3358(w), 3082(w), 3041(w), 2944(w), 2814(w), 2727(w), 1652(s), 1621(m), 1581(s), 1496(s), 1443(s), 1410(s), 1384(m), 1339(s), 1305(m), 1289(s), 1269(m), 1206(m), 1166(s), 1154(s), 1141(w), 1001(m), 952(s), 902(m), 840(s), 797(s), 772(w), 750(s), 729(s), 669(s), 640(s), 606(s), 582(s), 564(s), 540(w), 531(w), 521(m), 509(m), 455(s), 432(m), 424(w), 403(m). A good crystal suitable for x-ray measurement was prepared by vapour diffusion method in which compound (I) was dissolved in the least possible amount of DMF and then the solution was left at room temperature in the presence of water pool outside. The outside water slowly diffused by vapour and gradually mixed with DMF of the dye. After 7 days, dark orange crystals suitable for X-ray diffraction analysis was separated out.

Refinement

All H atoms were placed in idealized positions, (C—H = 0.95 Å, O—H = 0.84 Å, and N—H = 0.88 Å), and included in the refinement in a riding-model approximation, with Uiso(H) = 1.2Ueq (C and N) and Uiso(H) = 1.5Ueq (O). In the final difference Fourier map, the highest peak was located 0.83 Å from atom C10. The deepest hole was located 0.64 Å from atom S1.

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Part of the crystal structure showing a pair of molecules [symmetry code: (i)1 - x, 2 - y, 1 - z] stabilized by intra- and intermolecular hydrogen bonds (dashed lines).

Crystal data

C17H13N5O4SF000 = 792
Mr = 383.39? # Insert any comments here.
Monoclinic, P21/cDx = 1.521 Mg m3
Hall symbol: -P 2ybcMo Kα radiation λ = 0.71073 Å
a = 18.579 (2) ÅCell parameters from 9950 reflections
b = 5.7731 (7) Åθ = 2.4–28.3º
c = 17.372 (2) ŵ = 0.23 mm1
β = 115.99 (1)ºT = 100 (2) K
V = 1674.73 Å3Block, dark orange
Z = 40.30 × 0.20 × 0.10 mm

Data collection

Bruker SMART APEX CCD diffractometer3560 independent reflections
Radiation source: fine-focus sealed tube3277 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.017
T = 100(2) Kθmax = 26.7º
[var phi] and ω scansθmin = 2.4º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −23→23
Tmin = 0.934, Tmax = 0.977k = −7→7
17304 measured reflectionsl = −21→21

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034  w = 1/[σ2(Fo2) + (0.0513P)2 + 0.9337P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.42 e Å3
3560 reflectionsΔρmin = −0.37 e Å3
245 parametersExtinction correction: none
Secondary atom site location: difference Fourier map

Special details

Experimental. The first 50 frames were rescanned at the end of data collection to evaluate any possible decay phenomenon. Since it was judged to be negligible, no decay correction was applied to the data.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)13.7836 (0.0041) x + 2.4391 (0.0022) y - 13.7785 (0.0036) z = 4.2437 (0.0052)* 0.0258 (0.0010) O1 * -0.0309 (0.0010) O2 * 0.0133 (0.0012) C1 * -0.0188 (0.0013) C2 * -0.0067 (0.0012) C3 * 0.0010 (0.0012) C4 * 0.0430 (0.0013) C5 * 0.0139 (0.0012) C6 * -0.0207 (0.0013) C7 * -0.0198 (0.0009) N1 - 0.1255 (0.0017) N2 - 0.2396 (0.0024) C9 - 0.2576 (0.0024) C10 - 0.2407 (0.0024) C11 - 0.2117 (0.0022) C12 - 0.1607 (0.0019) C13Rms deviation of fitted atoms = 0.022513.5655 (0.0045) x + 2.3850 (0.0032) y - 14.0573 (0.0043) z = 3.6030 (0.0035)Angle to previous plane (with approximate e.s.d.) = 1.60 (0.06)* 0.0132 (0.0011) N2 * -0.0021 (0.0008) C9 * -0.0021 (0.0012) C10 * -0.0053 (0.0012) C11 * -0.0149 (0.0012) C12 * 0.0178 (0.0013) C13 * -0.0066 (0.0004) O1 - 0.0637 (0.0021) O2 0.0152 (0.0018) C1 0.0043 (0.0016) C2 0.0555 (0.0016) C3 0.0836 (0.0016) C4 0.1066 (0.0021) C5 0.0390 (0.0023) C6 - 0.0162 (0.0020) C7 0.1025 (0.0013) N1Rms deviation of fitted atoms = 0.01062.8895 (0.0099) x + 3.8287 (0.0026) y + 10.2469 (0.0065) z = 10.3651 (0.0036)Angle to previous plane (with approximate e.s.d.) = 89.38 (0.04)* -0.0192 (0.0009) N3 * 0.0179 (0.0011) N4 * 0.0136 (0.0010) N5 * 0.0038 (0.0012) C14 * -0.0009 (0.0012) C15 * -0.0197 (0.0013) C16 * 0.0045 (0.0011) C17Rms deviation of fitted atoms = 0.0136
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.67904 (2)0.77281 (6)0.52372 (2)0.02455 (11)
O11.32533 (7)0.9734 (2)1.18827 (7)0.0366 (3)
N50.49729 (7)0.7981 (2)0.57442 (7)0.0246 (3)
O40.67616 (6)0.9243 (2)0.45700 (6)0.0301 (2)
O30.68746 (6)0.52911 (19)0.51537 (7)0.0297 (2)
C170.46694 (9)0.6915 (3)0.62192 (9)0.0289 (3)
H130.41690.74180.61830.035*
N20.94619 (7)1.1123 (2)0.84456 (8)0.0282 (3)
N30.59631 (7)0.8311 (2)0.53095 (8)0.0280 (3)
H100.56680.94460.49870.034*
N11.00856 (7)0.9914 (2)0.87789 (8)0.0280 (3)
O21.24471 (7)1.3545 (2)1.17919 (7)0.0332 (3)
H11.28351.26241.20130.050*
C150.57921 (10)0.4485 (3)0.68056 (10)0.0357 (4)
H110.60790.32620.71810.043*
C160.50602 (9)0.5108 (3)0.67607 (10)0.0338 (3)
H120.48350.43320.70860.041*
C11.26947 (9)0.9081 (3)1.12173 (10)0.0310 (3)
H21.27360.76161.09910.037*
C51.06241 (9)1.3131 (3)0.98413 (10)0.0297 (3)
H41.01711.40670.95180.036*
C61.12111 (9)1.3967 (3)1.05977 (10)0.0299 (3)
H51.11551.54511.08020.036*
C120.81694 (9)1.1545 (3)0.72898 (9)0.0288 (3)
H90.81451.29980.75340.035*
C110.75308 (9)1.0818 (3)0.65434 (9)0.0286 (3)
H80.70741.17770.62620.034*
C80.88818 (9)0.7981 (3)0.73479 (9)0.0279 (3)
H60.93430.70340.76210.034*
C71.18899 (9)1.2628 (3)1.10648 (9)0.0269 (3)
C41.06845 (9)1.0915 (3)0.95400 (9)0.0265 (3)
C31.13632 (9)0.9607 (3)0.99930 (9)0.0266 (3)
H31.14170.81290.97830.032*
C90.82375 (9)0.7222 (3)0.66129 (9)0.0264 (3)
H70.82490.57370.63830.032*
C130.88463 (9)1.0158 (3)0.76846 (9)0.0266 (3)
C21.19719 (9)1.0441 (3)1.07584 (9)0.0266 (3)
N40.61192 (8)0.5519 (2)0.63453 (8)0.0328 (3)
C140.56803 (8)0.7196 (2)0.58287 (9)0.0246 (3)
C100.75726 (8)0.8652 (3)0.62140 (9)0.0242 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.02184 (18)0.0280 (2)0.02274 (19)0.00350 (13)0.00873 (14)0.00169 (13)
O10.0312 (6)0.0394 (6)0.0338 (6)0.0059 (5)0.0091 (5)0.0096 (5)
N50.0208 (6)0.0265 (6)0.0224 (6)0.0000 (5)0.0057 (5)0.0021 (5)
O40.0290 (5)0.0365 (6)0.0256 (5)0.0041 (4)0.0127 (4)0.0044 (4)
O30.0266 (5)0.0294 (6)0.0289 (5)0.0017 (4)0.0083 (4)−0.0033 (4)
C170.0238 (7)0.0335 (8)0.0269 (7)−0.0013 (6)0.0090 (6)0.0028 (6)
N20.0279 (6)0.0288 (6)0.0271 (6)0.0006 (5)0.0114 (5)−0.0006 (5)
N30.0231 (6)0.0318 (7)0.0284 (6)0.0076 (5)0.0107 (5)0.0102 (5)
N10.0277 (6)0.0293 (6)0.0275 (6)0.0005 (5)0.0127 (5)0.0003 (5)
O20.0292 (6)0.0361 (6)0.0280 (5)0.0013 (5)0.0066 (4)−0.0008 (5)
C150.0342 (8)0.0351 (8)0.0319 (8)0.0044 (7)0.0091 (6)0.0127 (7)
C160.0312 (8)0.0368 (8)0.0310 (7)−0.0031 (6)0.0115 (6)0.0091 (6)
C10.0311 (7)0.0297 (8)0.0333 (8)0.0039 (6)0.0150 (6)0.0073 (6)
C50.0255 (7)0.0300 (8)0.0311 (8)0.0052 (6)0.0100 (6)0.0016 (6)
C60.0301 (7)0.0261 (7)0.0323 (8)0.0024 (6)0.0127 (6)−0.0017 (6)
C120.0341 (8)0.0228 (7)0.0294 (7)0.0023 (6)0.0139 (6)−0.0011 (6)
C110.0295 (7)0.0258 (7)0.0289 (7)0.0065 (6)0.0114 (6)0.0034 (6)
C80.0245 (7)0.0319 (8)0.0267 (7)0.0056 (6)0.0105 (6)0.0004 (6)
C70.0256 (7)0.0298 (7)0.0257 (7)−0.0016 (6)0.0116 (6)0.0022 (6)
C40.0264 (7)0.0287 (7)0.0256 (7)−0.0005 (6)0.0126 (6)0.0003 (6)
C30.0297 (7)0.0240 (7)0.0296 (7)0.0006 (6)0.0162 (6)0.0016 (6)
C90.0272 (7)0.0264 (7)0.0266 (7)0.0044 (6)0.0129 (6)−0.0010 (6)
C130.0272 (7)0.0289 (7)0.0243 (7)−0.0008 (6)0.0118 (6)0.0002 (6)
C20.0265 (7)0.0272 (7)0.0280 (7)0.0011 (6)0.0138 (6)0.0057 (6)
N40.0275 (6)0.0359 (7)0.0309 (7)0.0074 (5)0.0091 (5)0.0113 (6)
C140.0220 (6)0.0261 (7)0.0220 (6)0.0002 (5)0.0064 (5)0.0011 (5)
C100.0236 (7)0.0276 (7)0.0214 (6)0.0013 (5)0.0099 (5)0.0012 (5)

Geometric parameters (Å, °)

S1—O31.4299 (11)C11—C101.391 (2)
S1—O41.4343 (11)C8—C91.384 (2)
S1—N31.6311 (12)C8—C131.400 (2)
S1—C101.7647 (15)C7—C21.404 (2)
O1—C11.226 (2)C4—C31.382 (2)
N5—C141.3362 (19)C3—C21.400 (2)
N5—C171.3362 (19)C9—C101.392 (2)
C17—C161.379 (2)C1—O3i2.9106 (19)
N2—N11.2558 (18)C5—H40.9500
N2—C131.4285 (19)N3—H100.8800
N3—C141.3857 (19)C1—H20.9500
N4—C141.3289 (19)C6—H50.9500
N1—C41.4250 (19)C8—H60.9500
O2—C71.3420 (18)C15—H110.9500
C15—N41.338 (2)C16—H120.9500
C15—C161.375 (2)C12—H90.9500
C1—C21.455 (2)O2—H10.8400
C5—C61.376 (2)C11—H80.9500
C5—C41.405 (2)C3—H30.9500
C6—C71.396 (2)C17—H130.9500
C12—C111.384 (2)C9—H70.9500
C12—C131.392 (2)
O3—S1—O4119.02 (7)C13—C12—H9119.8
O3—S1—N3111.08 (7)C12—C11—C10118.57 (13)
O4—S1—N3103.51 (6)C12—C11—H8120.7
O3—S1—C10108.31 (7)C10—C11—H8120.7
O4—S1—C10108.42 (7)C9—C8—C13119.32 (13)
N3—S1—C10105.68 (7)C9—C8—H6120.3
C14—N5—C17115.89 (13)C13—C8—H6120.3
N5—C17—C16122.09 (14)O2—C7—C6117.16 (14)
N5—C17—H13119.0O2—C7—C2122.97 (13)
C16—C17—H13119.0C6—C7—C2119.87 (14)
N1—N2—C13114.37 (13)C3—C4—C5119.16 (14)
C14—N3—S1126.38 (10)C3—C4—N1116.95 (13)
C14—N3—H10116.8C5—C4—N1123.89 (13)
S1—N3—H10116.8C4—C3—C2120.56 (14)
N2—N1—C4112.94 (13)C4—C3—H3119.7
C7—O2—H1109.5C2—C3—H3119.7
N4—C15—C16123.09 (15)C8—C9—C10119.44 (14)
N4—C15—H11118.5C8—C9—H7120.3
C16—C15—H11118.5C10—C9—H7120.3
C15—C16—C17116.64 (14)C12—C13—C8120.55 (14)
C15—C16—H12121.7C12—C13—N2114.57 (13)
C17—C16—H12121.7C8—C13—N2124.86 (13)
O1—C1—C2123.15 (15)C3—C2—C7119.50 (13)
O1—C1—H2118.4C3—C2—C1120.14 (14)
C2—C1—H2118.4C7—C2—C1120.34 (14)
C6—C5—C4121.07 (14)C14—N4—C15115.06 (13)
C6—C5—H4119.5N4—C14—N5127.19 (14)
C4—C5—H4119.5N4—C14—N3118.86 (13)
C5—C6—C7119.78 (14)N5—C14—N3113.95 (12)
C5—C6—H5120.1C11—C10—C9121.71 (13)
C7—C6—H5120.1C11—C10—S1119.74 (11)
C11—C12—C13120.37 (14)C9—C10—S1118.47 (11)
C11—C12—H9119.8
C14—N5—C17—C16−0.3 (2)C4—C3—C2—C1−178.17 (13)
O3—S1—N3—C1446.71 (15)O2—C7—C2—C3−179.94 (13)
O4—S1—N3—C14175.57 (13)C6—C7—C2—C3−1.2 (2)
C10—S1—N3—C14−70.55 (14)O2—C7—C2—C1−1.9 (2)
C13—N2—N1—C4−179.50 (12)C6—C7—C2—C1176.90 (14)
N4—C15—C16—C17−1.1 (3)O1—C1—C2—C3178.82 (14)
N5—C17—C16—C151.6 (2)O1—C1—C2—C70.8 (2)
C4—C5—C6—C71.8 (2)C16—C15—N4—C14−0.6 (2)
C13—C12—C11—C101.9 (2)C15—N4—C14—N52.2 (2)
C5—C6—C7—O2179.17 (13)C15—N4—C14—N3−178.08 (14)
C5—C6—C7—C20.3 (2)C17—N5—C14—N4−1.7 (2)
C6—C5—C4—C3−3.0 (2)C17—N5—C14—N3178.51 (13)
C6—C5—C4—N1177.69 (14)S1—N3—C14—N42.0 (2)
N2—N1—C4—C3174.33 (13)S1—N3—C14—N5−178.19 (11)
N2—N1—C4—C5−6.4 (2)C12—C11—C10—C9−0.3 (2)
C5—C4—C3—C22.2 (2)C12—C11—C10—S1−177.03 (11)
N1—C4—C3—C2−178.51 (12)C8—C9—C10—C11−1.2 (2)
C13—C8—C9—C101.1 (2)C8—C9—C10—S1175.57 (11)
C11—C12—C13—C8−2.0 (2)O3—S1—C10—C11−165.58 (11)
C11—C12—C13—N2179.57 (13)O4—S1—C10—C1163.96 (13)
C9—C8—C13—C120.4 (2)N3—S1—C10—C11−46.48 (13)
C9—C8—C13—N2178.74 (14)O3—S1—C10—C917.59 (14)
N1—N2—C13—C12−177.01 (13)O4—S1—C10—C9−112.87 (12)
N1—N2—C13—C84.6 (2)N3—S1—C10—C9136.69 (12)
C4—C3—C2—C7−0.1 (2)

Symmetry codes: i.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H1···O10.841.902.6269 (17)145
N3—H10···N5i0.881.982.8574 (17)179

Symmetry codes: (i) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2668).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Open, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2004). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2006). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gaber, M., El-Baradie, K. & El-Sayed, Y. (2008). Spectrochim. Acta (A), 69, 543–541.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Kakoti, M., Choudhury, S., Deb, A. K. & Goswami, S. (1993). Polyhedron, 12, 783–789.
  • La Roche, H. & Co, A. G. (1967a). Chem. Abstr 67, 73323r.
  • La Roche, H. & Co, A. G. (1967b). Swiss Patent, Neth. Apt. 66610, 566 (Cl. CO 7d). 31.
  • Misra, T. K., Das, D., Sinha, C., Ghosh, P. & Pal, C. K. (1998). Inorg. Chem.37, 8, 1672–1678.
  • Molecular Structure Corporation (2001). TEXSAN MSC, The Woodlands, Texas, USA.
  • Mubarak, A. T., El-Sonbati, A. Z. & Ahmed, S. M. (2007). J. Coord. Chem.60, 17, 1877–1890.
  • Nagaraja, P., Sunith, K., Vasantha, R. & Yathirajan, H. (2002). Eur. J. Pharm. Biopharm.53, 187–192. [PubMed]
  • Sakai, K. (2004). KENX Kyushu University, Japan.
  • Santra, B. K. & Lahiri, G. K. (1997). J. Chem. Soc. Dalton Trans. pp. 1883–1888.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vaichulis, A. J. (1977). US Patent 8 273 352 .

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography