PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1790–o1791.
Published online 2008 August 20. doi:  10.1107/S1600536808026305
PMCID: PMC2960708

(Z)-6-{2-[(E)-2,4-Dihydroxy­benzyl­ideneamino]phenyl­amino­methyl­ene}-3-hydroxy­cyclo­hexa-2,4-dienone toluene solvate

Abstract

The bis-Schiff base title compound, C20H16N2O4·C7H8, crystallized as a toluene solvate. In the solid state, it is present as its prototropic tautomer formed by transfer of one of the ortho-hydroxyl H atoms. The proton transfer is accompanied by a shift of electron pairs, as is evident from the observed C—O and C—N bond distances of 1.305 (2) and 1.315 (2) Å, which are largely consistent with C=O and C—N distances. The actual mol­ecule present in the solid state is thus the charge-neutral β-keto amine, with a small contribution of its zwitterionic valence tautomer via partial delocalization of electron pairs along the N—C—C—C—O atom chain. The dihedral angles between the central benzene ring and the two outer benzene rings of the Schiff base are 51.99 (8) and 12.95 (9)°. Intra­molecular O—H(...)N and N—H(...)O hydrogen bonds generate S(6) ring motifs, whereas intra­molecular N—H(...)N hydrogen bonds generate S(5) ring motifs. In the crystal structure, O—H(...)O hydrogen bonds and weak C—H(...)O inter­actions link the mol­ecules into one-dimensional zigzag chains along the b axis; these chains are further stacked by O—H(...)O and weak C—H(...)O inter­actions along the c axis, forming two-dimensional extended networks parallel to the bc plane. In addition, the crystal structure is further stabilized by weak C—H(...)π and π–π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For related structures, see, for example: Cakir et al. (2002 [triangle]); Eltayeb et al. (2007a [triangle],b [triangle]); Karabiyik et al. (2007 [triangle]); Fun, Kargar & Kia (2008 [triangle]); Fun, Kia & Kargar (2008 [triangle]); Fun, Mirkhani et al. (2008a [triangle],b [triangle]). For background on applications of Schiff base ligands, see, for example: Hajioudis et al. (1987 [triangle]); Granovski et al. (1993 [triangle]); Dao et al. (2000 [triangle]); Shahrokhian et al. (2000 [triangle]); Eltayeb & Ahmed (2005a [triangle],b [triangle]); Fakhari et al. (2005 [triangle]); Karthikeyan et al. (2006 [triangle]); Sriram et al. (2006 [triangle]). For related literature, see: Fun & Kia (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1790-scheme1.jpg

Experimental

Crystal data

  • C20H16N2O4·C7H8
  • M r = 440.48
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1790-efi1.jpg
  • a = 11.9753 (3) Å
  • b = 18.8539 (5) Å
  • c = 9.9240 (2) Å
  • β = 108.819 (1)°
  • V = 2120.87 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 100.0 (1) K
  • 0.25 × 0.13 × 0.02 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.954, T max = 0.994
  • 24830 measured reflections
  • 6233 independent reflections
  • 4023 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.163
  • S = 1.11
  • 6233 reflections
  • 299 parameters
  • H-atom parameters constrained
  • Δρmax = 0.76 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Selected centroid(...)centroid distances (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808026305/zl2135sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026305/zl2135Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. VM and HZ thank the University of Isfahan for financial support.

supplementary crystallographic information

Comment

Schiff bases have received much attention because of their potential applications with some of these compounds exhibiting various pharmacological activities, as noted by their anticancer (Dao et al., 2000), anti-HIV (Sriram et al., 2006), antibacterial and antifungal (Karthikeyan et al., 2006) properties. Although numerous transition-metal complexes of Schiff bases have been structurally characterized (Granovski et al., 1993), relatively few free Schiff bases have been similarly characterized. N-substituted salicylaldimines show photochromism and thermochromism in the solid state. These effects are produced by intramolecular proton transfer associated with a change in the π-electron configuration (Hajioudis et al. 1987). In addition, some of them may be used as analytical reagents for the determination of trace elements (Eltayeb & Ahmed, 2005a,b) such as nickel in some natural food products (Fakhari et al., 2005) or biologically important species (Shahrokhian et al., 2000). As part of a general study of tetradenate and bidentate Schiff bases (Fun, Kargar & Kia 2008; Fun, Kia & Kargar 2008; Fun, Mirkhani et al., 2008a,b), we determined the structure of the title compound.

The title compound was synthesized from o-phenylenediamine by reaction with two equivalents of 2,4-dihydroxybenzaldehyde, and the expected reaction product would thus have been the bis-Schiff base 4-((E)-(2-((E)-2-hydroxybenzylideneamino)phenylimino)methyl) benzene-1,3-diol. The actual molecule obtained in the solid state is however its prototropic tautomer formed by transfer of one of the ortho-hydroxyl protons onto the adjacent imine unit. The proton transfer is accompanied by a shift of electron pairs as is evident from the observed C20–O2 and C14–N2 bond distances of 1.305 (2) and 1.315 (2) Å, which are consistent with C═O and C—N distances (Allen et al., 1987), respectively. The formation of a C═O keto group rather than a C-O- phenolate is also obvious by comparison with the other three phenol C-OH groups in the structure, which are about 0.05 Å longer than C20—O2. The actual molecule present in the solid state is thus the charge neutral β-keto amine (Z)-3-hydroxy-6-((2-((E)-2- hydroxybenzylideneamino)phenylamino)methylene)cyclohexa-2,4-dienone (top isomer in Fig. 4), with a small contribution of its zwitter-ionic valence tautomer via partial delocalization of electron pairs along the atom chain N2—C14—C15—C20—O2 (bottom tautomer in Fig. 4). The other imine group did not undergo proton transfer and is present in its original Shiff base state. Both the imine as well as the amine units are stabilized by strong O—H···N and N—H···O hydrogen bonds (Table 2) that generate S(6) ring motifs whereas the intramolecular N—H···N hydrogen bond between the amine and imine (Table 2) exhibits an S(5) ring motif (Bernstein et al., 1995). Bond lengths and angles are in normal ranges (Allen et al., 1987) and comparable to those in related structures (Eltayeb et al., 2007a,b; Cakir et al. 2002; Karabiyik et al., 2007). The C8–C13 phenyl ring makes a dihedral angle of 51.99 (8)° with the dihydroxyphenyl ring (C1–C6/O1/O3) and 12.95 (9)° with the keto-hydroxyphenyl ring (C15–C20/O2/O4). In the crystal packing (Fig. 2), additional O—H···O hydrogen bonds and weak C—H···O interactions (Table 2) link the molecules into one dimensional zigzag extended chains along the b axis and these chains are further stacked (Fig. 2 & 3) along the c axis thus forming two-dimensional extended networks parallel to the bc plane. The crystal is further stabilized by weak C—H···π interactions (Table 2). The short distance between the centroids of the six-membered rings prove an existence of π···π interactions (Table 1).

Experimental

The title compound was synthesized by adding 2,4-dihydroxybenzaldehyde (0.552 g, 4 mmol) to a solution of o-phenylenediamine (0.216 g, 2 mmol) in ethanol (20 ml). The mixture was refluxed with stirring for half an hour. The resultant yellow solution was filtered. Yellow single crystals of the title compound suitable for X-ray structure determination were recrystallized from a mixture of THF/toluene (2/1) by slow evaporation of the solvents at room temperature over several days.

Refinement

Hydroxyl and amine/imine H atoms were located from the difference Fourier map and refined as riding on the parent atoms with isotropic refinement of the displacement parameters. The remaining H atoms were geometrically located and refined as riding model. A rotating group model was used for the methyl groups.

Figures

Fig. 1.
The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular hydrogen bonds are drawn as dashed lines.
Fig. 2.
The crystal packing of (I), viewed down the c axis, showing the molecular chains along the b axis and stacking of these chains along the c-axis. Hydrogen bonds are drawn as dashed lines. The toluene molecules were omitted for clarity.
Fig. 3.
The crystal packing of (I), showing 1-D extended chains along the c axis. The toluene molecules were omitted for clarity.
Fig. 4.
The charge neutral β-keto amine (main component) form and the valence tautomer via partial delocalization of electron pairs along the N—C—C—C—O atom chain (small contribution) in the title compound.

Crystal data

C20H16N2O4·C7H8F000 = 928
Mr = 440.48Dx = 1.380 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5653 reflections
a = 11.9753 (3) Åθ = 2.4–29.6º
b = 18.8539 (5) ŵ = 0.09 mm1
c = 9.9240 (2) ÅT = 100.0 (1) K
β = 108.819 (1)ºPlate, yellow
V = 2120.87 (9) Å30.25 × 0.13 × 0.02 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer6233 independent reflections
Radiation source: fine-focus sealed tube4023 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.039
T = 100.0(1) Kθmax = 30.2º
[var phi] and ω scansθmin = 2.2º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −14→16
Tmin = 0.954, Tmax = 0.994k = −20→26
24830 measured reflectionsl = −13→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.163  w = 1/[σ2(Fo2) + (0.0708P)2 + 0.4015P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
6233 reflectionsΔρmax = 0.76 e Å3
299 parametersΔρmin = −0.32 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.18268 (12)0.42566 (7)0.14400 (14)0.0168 (3)
O30.50774 (11)0.63459 (6)0.61784 (12)0.0214 (3)
H1O30.57240.66080.60440.032*
O10.23309 (11)0.45373 (6)0.41957 (12)0.0225 (3)
H1O10.20530.42700.33490.034*
O40.48126 (11)0.07727 (6)0.62444 (12)0.0217 (3)
H1O40.49990.09950.70960.033*
O20.31282 (10)0.29118 (6)0.39178 (12)0.0187 (3)
N20.17826 (12)0.28136 (7)0.12862 (14)0.0170 (3)
H1N20.21520.30430.20790.025*
C80.11363 (14)0.39346 (9)0.01527 (17)0.0165 (3)
C60.31241 (14)0.51993 (9)0.26313 (17)0.0161 (3)
C150.27803 (14)0.18211 (9)0.26242 (17)0.0165 (3)
C130.10818 (14)0.31889 (9)0.00863 (17)0.0164 (3)
C160.30131 (15)0.10819 (9)0.26262 (18)0.0194 (4)
H16A0.26840.08180.17750.023*
C70.24537 (14)0.48061 (9)0.13868 (17)0.0165 (3)
H7A0.24750.49590.04830.020*
C90.04597 (15)0.43207 (9)−0.10182 (17)0.0193 (4)
H9A0.04870.4824−0.09880.023*
C190.39752 (15)0.18616 (9)0.51268 (17)0.0177 (3)
H19A0.43050.21130.59940.021*
C50.38949 (15)0.57342 (8)0.25065 (17)0.0176 (4)
H5A0.39610.58340.15970.021*
C10.30495 (14)0.50578 (8)0.39969 (17)0.0163 (3)
C170.36973 (15)0.07431 (9)0.38208 (18)0.0198 (4)
H17A0.38530.02500.38040.024*
C180.41709 (15)0.11407 (9)0.50847 (17)0.0176 (3)
C20.36978 (14)0.54490 (9)0.51645 (17)0.0175 (4)
H2A0.36270.53580.60750.021*
C120.03656 (15)0.28533 (9)−0.11326 (17)0.0204 (4)
H12A0.03330.2350−0.11730.024*
C200.32949 (14)0.22283 (9)0.39033 (17)0.0164 (3)
C40.45602 (15)0.61205 (9)0.36648 (17)0.0185 (4)
H4A0.50830.64790.35590.022*
C140.20597 (15)0.21362 (9)0.13726 (17)0.0176 (4)
H14A0.17560.18490.05480.021*
C10−0.02551 (15)0.39818 (10)−0.22315 (18)0.0225 (4)
H10A−0.07140.4253−0.30240.027*
C30.44526 (14)0.59760 (9)0.49988 (17)0.0168 (3)
C11−0.02984 (15)0.32460 (10)−0.22838 (18)0.0231 (4)
H11A−0.07860.3013−0.31140.028*
C230.30310 (18)0.71109 (11)0.7808 (2)0.0329 (5)
H23A0.35830.73840.75230.040*
C250.2145 (2)0.67854 (11)0.9559 (2)0.0352 (5)
H25A0.20930.68301.04900.042*
C260.13983 (19)0.63297 (10)0.8595 (2)0.0314 (5)
H26A0.08220.60730.88670.038*
C220.22868 (18)0.66449 (10)0.6864 (2)0.0293 (4)
H22A0.23390.66040.59320.035*
C210.14696 (17)0.62366 (10)0.7224 (2)0.0292 (4)
C240.29687 (18)0.71778 (11)0.9173 (2)0.0350 (5)
H24A0.34870.74900.98370.042*
C270.0688 (2)0.57353 (12)0.6196 (2)0.0402 (5)
H27A0.11660.53650.59540.060*
H27B0.02420.59920.53310.060*
H27C0.01390.55170.66220.060*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0194 (7)0.0153 (7)0.0144 (7)0.0009 (6)0.0036 (6)−0.0015 (5)
O30.0251 (7)0.0191 (6)0.0189 (6)−0.0058 (5)0.0056 (5)−0.0025 (5)
O10.0294 (7)0.0215 (7)0.0167 (6)−0.0103 (5)0.0076 (5)−0.0025 (5)
O40.0273 (7)0.0183 (6)0.0174 (6)0.0051 (5)0.0043 (5)0.0029 (5)
O20.0224 (6)0.0131 (6)0.0187 (6)−0.0011 (5)0.0039 (5)−0.0009 (5)
N20.0183 (7)0.0169 (7)0.0137 (7)−0.0029 (6)0.0025 (6)−0.0007 (5)
C80.0163 (8)0.0201 (9)0.0131 (8)−0.0010 (7)0.0048 (6)−0.0024 (6)
C60.0180 (8)0.0144 (8)0.0150 (8)0.0017 (6)0.0040 (6)−0.0004 (6)
C150.0189 (8)0.0162 (8)0.0163 (8)−0.0011 (7)0.0082 (7)−0.0006 (6)
C130.0152 (8)0.0170 (8)0.0172 (8)0.0002 (6)0.0053 (7)0.0015 (6)
C160.0261 (9)0.0173 (9)0.0168 (8)−0.0008 (7)0.0099 (7)−0.0025 (7)
C70.0188 (8)0.0165 (8)0.0139 (8)0.0033 (7)0.0047 (7)0.0005 (6)
C90.0218 (9)0.0181 (9)0.0169 (8)0.0033 (7)0.0047 (7)0.0013 (7)
C190.0196 (8)0.0176 (9)0.0151 (8)−0.0014 (7)0.0044 (7)−0.0009 (6)
C50.0212 (9)0.0157 (8)0.0168 (8)0.0027 (7)0.0073 (7)0.0031 (6)
C10.0180 (8)0.0133 (8)0.0174 (8)0.0012 (6)0.0055 (7)0.0008 (6)
C170.0259 (9)0.0148 (8)0.0214 (9)0.0022 (7)0.0115 (7)0.0005 (7)
C180.0179 (8)0.0186 (9)0.0177 (8)0.0022 (7)0.0077 (7)0.0034 (7)
C20.0206 (9)0.0162 (8)0.0156 (8)0.0005 (7)0.0059 (7)−0.0002 (6)
C120.0195 (9)0.0194 (9)0.0205 (9)−0.0045 (7)0.0041 (7)−0.0035 (7)
C200.0163 (8)0.0161 (8)0.0182 (8)−0.0010 (6)0.0074 (7)0.0003 (6)
C40.0202 (9)0.0143 (8)0.0207 (9)−0.0003 (7)0.0062 (7)0.0011 (7)
C140.0214 (9)0.0156 (8)0.0167 (8)−0.0025 (7)0.0074 (7)−0.0007 (6)
C100.0197 (9)0.0285 (10)0.0159 (8)0.0037 (7)0.0012 (7)0.0014 (7)
C30.0179 (8)0.0142 (8)0.0164 (8)0.0008 (6)0.0028 (7)−0.0034 (6)
C110.0197 (9)0.0291 (10)0.0168 (9)−0.0014 (8)0.0009 (7)−0.0037 (7)
C230.0296 (11)0.0343 (12)0.0362 (12)0.0008 (9)0.0124 (9)0.0017 (9)
C250.0458 (13)0.0309 (11)0.0313 (11)0.0098 (10)0.0158 (10)0.0044 (9)
C260.0341 (11)0.0258 (11)0.0402 (12)0.0053 (9)0.0201 (10)0.0106 (9)
C220.0307 (11)0.0280 (10)0.0316 (11)0.0033 (9)0.0134 (9)0.0029 (8)
C210.0292 (10)0.0275 (10)0.0311 (11)0.0057 (8)0.0101 (9)0.0055 (8)
C240.0330 (11)0.0363 (12)0.0336 (11)0.0063 (9)0.0076 (9)−0.0001 (9)
C270.0429 (13)0.0380 (13)0.0415 (13)−0.0042 (10)0.0161 (11)0.0008 (10)

Geometric parameters (Å, °)

N1—C71.290 (2)C5—H5A0.9500
N1—C81.415 (2)C1—C21.382 (2)
O3—C31.3608 (19)C17—C181.413 (2)
O3—H1O30.9628C17—H17A0.9500
O1—C11.3608 (19)C2—C31.388 (2)
O1—H1O10.9431C2—H2A0.9500
O4—C181.3513 (19)C12—C111.378 (2)
O4—H1O40.9048C12—H12A0.9500
O2—C201.3048 (19)C4—C31.398 (2)
N2—C141.315 (2)C4—H4A0.9500
N2—C131.406 (2)C14—H14A0.9500
N2—H1N20.8816C10—C111.389 (3)
C8—C91.389 (2)C10—H10A0.9500
C8—C131.408 (2)C11—H11A0.9500
C6—C51.399 (2)C23—C221.380 (3)
C6—C11.412 (2)C23—C241.387 (3)
C6—C71.442 (2)C23—H23A0.9500
C15—C141.396 (2)C25—C261.379 (3)
C15—C161.421 (2)C25—C241.382 (3)
C15—C201.441 (2)C25—H25A0.9500
C13—C121.389 (2)C26—C211.402 (3)
C16—C171.363 (2)C26—H26A0.9500
C16—H16A0.9500C22—C211.380 (3)
C7—H7A0.9500C22—H22A0.9500
C9—C101.388 (2)C21—C271.482 (3)
C9—H9A0.9500C24—H24A0.9500
C19—C181.382 (2)C27—H27A0.9800
C19—C201.406 (2)C27—H27B0.9800
C19—H19A0.9500C27—H27C0.9800
C5—C41.377 (2)
Cg1···Cg1i3.7867 (1)Cg2···Cg3ii4.5626 (3)
C7—N1—C8119.05 (14)C11—C12—C13120.40 (16)
C3—O3—H1O3112.8C11—C12—H12A119.8
C1—O1—H1O1108.3C13—C12—H12A119.8
C18—O4—H1O4117.3O2—C20—C19121.60 (15)
C14—N2—C13127.78 (14)O2—C20—C15120.84 (15)
C14—N2—H1N2112.0C19—C20—C15117.56 (15)
C13—N2—H1N2120.0C5—C4—C3118.85 (15)
C9—C8—C13118.59 (15)C5—C4—H4A120.6
C9—C8—N1122.94 (15)C3—C4—H4A120.6
C13—C8—N1118.38 (14)N2—C14—C15122.80 (15)
C5—C6—C1117.97 (15)N2—C14—H14A118.6
C5—C6—C7119.71 (14)C15—C14—H14A118.6
C1—C6—C7122.32 (15)C9—C10—C11119.84 (16)
C14—C15—C16118.90 (15)C9—C10—H10A120.1
C14—C15—C20121.53 (15)C11—C10—H10A120.1
C16—C15—C20119.57 (15)O3—C3—C2117.60 (14)
C12—C13—N2122.70 (15)O3—C3—C4121.45 (15)
C12—C13—C8120.12 (15)C2—C3—C4120.95 (15)
N2—C13—C8117.18 (14)C12—C11—C10120.08 (16)
C17—C16—C15121.56 (15)C12—C11—H11A120.0
C17—C16—H16A119.2C10—C11—H11A120.0
C15—C16—H16A119.2C22—C23—C24119.6 (2)
N1—C7—C6123.24 (15)C22—C23—H23A120.2
N1—C7—H7A118.4C24—C23—H23A120.2
C6—C7—H7A118.4C26—C25—C24120.16 (19)
C10—C9—C8120.97 (16)C26—C25—H25A119.9
C10—C9—H9A119.5C24—C25—H25A119.9
C8—C9—H9A119.5C25—C26—C21121.50 (19)
C18—C19—C20120.93 (15)C25—C26—H26A119.3
C18—C19—H19A119.5C21—C26—H26A119.3
C20—C19—H19A119.5C21—C22—C23122.41 (19)
C4—C5—C6121.86 (15)C21—C22—H22A118.8
C4—C5—H5A119.1C23—C22—H22A118.8
C6—C5—H5A119.1C22—C21—C26116.88 (19)
O1—C1—C2118.28 (14)C22—C21—C27121.39 (18)
O1—C1—C6120.95 (14)C26—C21—C27121.72 (19)
C2—C1—C6120.77 (15)C25—C24—C23119.4 (2)
C16—C17—C18118.67 (16)C25—C24—H24A120.3
C16—C17—H17A120.7C23—C24—H24A120.3
C18—C17—H17A120.7C21—C27—H27A109.5
O4—C18—C19122.31 (15)C21—C27—H27B109.5
O4—C18—C17116.02 (15)H27A—C27—H27B109.5
C19—C18—C17121.66 (15)C21—C27—H27C109.5
C1—C2—C3119.59 (15)H27A—C27—H27C109.5
C1—C2—H2A120.2H27B—C27—H27C109.5
C3—C2—H2A120.2
C7—N1—C8—C9−43.9 (2)N2—C13—C12—C11−179.57 (15)
C7—N1—C8—C13139.83 (16)C8—C13—C12—C11−0.2 (2)
C14—N2—C13—C1214.2 (3)C18—C19—C20—O2−178.20 (15)
C14—N2—C13—C8−165.19 (16)C18—C19—C20—C152.0 (2)
C9—C8—C13—C120.2 (2)C14—C15—C20—O2−2.0 (2)
N1—C8—C13—C12176.67 (14)C16—C15—C20—O2177.67 (15)
C9—C8—C13—N2179.64 (14)C14—C15—C20—C19177.82 (15)
N1—C8—C13—N2−3.9 (2)C16—C15—C20—C19−2.5 (2)
C14—C15—C16—C17−179.13 (15)C6—C5—C4—C3−0.5 (2)
C20—C15—C16—C171.2 (2)C13—N2—C14—C15179.10 (15)
C8—N1—C7—C6175.76 (15)C16—C15—C14—N2178.73 (15)
C5—C6—C7—N1172.13 (15)C20—C15—C14—N2−1.6 (2)
C1—C6—C7—N1−6.8 (3)C8—C9—C10—C11−0.1 (3)
C13—C8—C9—C10−0.1 (2)C1—C2—C3—O3−179.73 (14)
N1—C8—C9—C10−176.39 (15)C1—C2—C3—C40.5 (2)
C1—C6—C5—C4−0.5 (2)C5—C4—C3—O3−179.24 (15)
C7—C6—C5—C4−179.50 (15)C5—C4—C3—C20.5 (2)
C5—C6—C1—O1−178.99 (14)C13—C12—C11—C100.0 (3)
C7—C6—C1—O10.0 (2)C9—C10—C11—C120.1 (3)
C5—C6—C1—C21.6 (2)C24—C25—C26—C211.7 (3)
C7—C6—C1—C2−179.48 (15)C24—C23—C22—C210.1 (3)
C15—C16—C17—C180.7 (2)C23—C22—C21—C261.9 (3)
C20—C19—C18—O4−179.47 (15)C23—C22—C21—C27−179.43 (19)
C20—C19—C18—C17−0.1 (2)C25—C26—C21—C22−2.7 (3)
C16—C17—C18—O4178.10 (14)C25—C26—C21—C27178.57 (19)
C16—C17—C18—C19−1.3 (2)C26—C25—C24—C230.4 (3)
O1—C1—C2—C3178.99 (15)C22—C23—C24—C25−1.2 (3)
C6—C1—C2—C3−1.6 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y−1/2, z−3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.941.832.6568 (17)145
O3—H1O3···O2i0.961.642.5919 (18)171
O4—H1O4···O3iii0.901.872.7403 (16)162
N2—H1N2···O20.881.842.5954 (18)143
N2—H1N2···N10.882.372.7245 (19)104
C16—H16A···O1iv0.952.553.439 (2)157
C17—H17A···O4v0.952.513.381 (2)152
C11—H11A···Cg4vi0.952.973.619 (2)126

Symmetry codes: (i) −x+1, −y+1, −z+1; (iii) −x+1, y−1/2, −z+3/2; (iv) x, −y+1/2, z−1/2; (v) −x+1, −y, −z+1; (vi) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2135).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cakir, O., Elerman, Y. & Elmali, A. (2002). Anal. Sci., 18, 377–377. [PubMed]
  • Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem.35, 805–813. [PubMed]
  • Eltayeb, N. E. & Ahmed, T. A. (2005a). J. Sci. Tech.6, 51–59.
  • Eltayeb, N. E. & Ahmed, T. A. (2005b). Sudan J. Basic Sci 7, 97–108.
  • Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007a). Acta Cryst. E63, o3094–o3095.
  • Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, o3234–o3235.
  • Fakhari, A. R., Khorrami, A. R. & Naeimi, H. (2005). Talanta, 66, 813–817. [PubMed]
  • Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308. [PMC free article] [PubMed]
  • Fun, H.-K. & Kia, R. (2008). Acta Cryst. E64, o1657–o1658. [PMC free article] [PubMed]
  • Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335. [PMC free article] [PubMed]
  • Fun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008a). Acta Cryst. E64, o1374–o1375. [PMC free article] [PubMed]
  • Fun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008b). Acta Cryst. E64, o1471. [PMC free article] [PubMed]
  • Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev.126, 1–69.
  • Hajioudis, E., Vitterakis, M. & Mustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1351.
  • Karabıyık, H., Güzel, B., Aygün, M., Boğa, G. & Büyükgüngör, O. (2007). Acta Cryst. C63, o215–o218. [PubMed]
  • Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem.14, 7482–7489. [PubMed]
  • Shahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem.72, 956–962. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett.16, 2127–2129. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography