PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1107.
Published online 2008 August 6. doi:  10.1107/S1600536808023945
PMCID: PMC2960702

trans-Tetra­iodidobis(tri-p-tolyl­phosphine oxide-κO)tin(IV)

Abstract

The centrosymmetric title compound, [SnI4(C21H21OP)2], is a monomeric complex that displays a nearly octa­hedral coordination of tin(IV), with an Sn—O bond distance of 2.159 (2) Å and an average Sn—I bond distance of 2.79 (3) Å.

Related literature

For examples of structurally characterized tin(IV) halide complexes of phosphine oxide ligands, see: Tursina et al. (1985 [triangle]); Tursina, Aslanov et al. (1986 [triangle]); Tursina, Yatsenko et al. (1986 [triangle]); Tudela et al. (1993 [triangle]); Genge et al. (1999 [triangle]); Szymanska-Buzar et al. (2001 [triangle]); Davis, Clarke et al. (2006 [triangle]); Davis, Levason et al. (2006 [triangle]); Caldwell & Tanski (2008 [triangle]). For related literature, see: Levason et al. (2003 [triangle]); Woollins (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1107-scheme1.jpg

Experimental

Crystal data

  • [SnI4(C21H21OP)2]
  • M r = 1266.99
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1107-efi1.jpg
  • a = 18.6013 (11) Å
  • b = 11.9677 (7) Å
  • c = 19.3335 (11) Å
  • V = 4303.9 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.57 mm−1
  • T = 125 (2) K
  • 0.20 × 0.20 × 0.05 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.535, T max = 0.842
  • 53839 measured reflections
  • 5331 independent reflections
  • 4841 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.019
  • wR(F 2) = 0.048
  • S = 1.07
  • 5331 reflections
  • 235 parameters
  • H-atom parameters constrained
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808023945/pv2089sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023945/pv2089Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

supplementary crystallographic information

Comment

Tin(IV) iodide may be readily prepared by oxidation of tin metal with iodine (Woollins, 2003). A relatively weak Lewis acid, SnI4 nevertheless forms complexes with phosphines and phosphine oxides (Genge et al. 1999; Davis, Clarke et al. 2006; Caldwell & Tanski, 2008). The phosphine oxide complexes are chiefly obtained by air oxidation of the phosphine ligands in the presence of the tin(IV) halide (Levason et al. 2003). The crystal and molecular structures of the bis(triphenyl phosphine oxide) adducts of SnX4, where X = F, Cl, Br and I, have all been previously reported. In the case of the fluoride, trans-[Ph3PO]2SnF4, the the phospine oxides are mutually trans (Davis, Clarke et al. 2006). The chloride, cis-[Ph3PO]2SnCl4, exhibits cis phospine oxides ligands (Tursina et al. 1985; Szymanska-Buzar et al. 2001), although it has been reported that both the cis and trans isomers are observed in solution by 31P NMR (Davis, Levason et al. 2006<). The structures of both cis-[Ph3PO]2SnBr4 and trans-[Ph3PO]2SnBr4 are known for the bromide (Tudela et al. 1993; Tursina, Yatsenko et al. 1986). In the structure of the iodide, the triphenyl phosphine oxide ligands of cis-[Ph3PO]2SnI4 are found to be cis (Tursina, Aslanov et al. 1986). As reported here, tri(p-tolyl) phosphine oxide results in an iodide complex wherein the phosphine oxide ligands are found to be trans.

Reaction of SnI4 with tri(p-tolyl) phosphine, (p-CH3C6H4)3P, in CHCl3 in the presence of air afforded the title complex [(p-CH3C6H4)3PO]2SnI4, (I).

Complex (I) exhibits a nearly octahedral coordination at tin, which resides on a crystallographic inversion center. The phosphine oxide ligands are mutually trans, with an Sn—O distance of 2.159 (2) Å, and Sn—I distances of 2.7674 (2) and 2.8158 (2) Å. Relevant bond lengths and angles can be found in Table 1. Despite the p-CH3 substituent and trans orientation of the phosphine oxide ligands in (I), the Sn—O and Sn—I distances in (I) are very similar to those found in cis-[Ph3PO]2SnI4, wherein the Sn—O distances are 2.15 (2) and 2.11 (2) Å, and the Sn—I distances range from 2.781 (2) to 2.816 (2) Å (Tursina, Aslanov et al. 1986).

Experimental

Complex (I) was prepared by treating a chloroform (ca 10 ml) solution of SnI4 (626 mg, 1.00 mmol) with an excess of (p-CH3C6H4)3P (647 mg, 2.13 mmol) in the presence of air. Suitable crystals for single-crystal X-ray analysis separated as orange plates within 2 weeks at room temperature.

Refinement

H atoms on carbon atoms were included in calculated positions using a riding model at C—H distances 0.95 and 0.98 Å and Uiso(H) = 1.2 and 1.5Ueq(C) of the aryl and methyl C-atoms, respectively.

Figures

Fig. 1.
A view of complex (I) with displacement ellipsoids shown at the 50% probability level. H atoms have been omitted for clarity. Symmetry code: i = -x, -y+1, -z+1

Crystal data

[SnI4(C21H21OP)2]F000 = 2408
Mr = 1266.99Dx = 1.955 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P2ac2abCell parameters from 9901 reflections
a = 18.6013 (11) Åθ = 2.8–28.3º
b = 11.9677 (7) ŵ = 3.57 mm1
c = 19.3335 (11) ÅT = 125 (2) K
V = 4303.9 (4) Å3Plate, orange
Z = 40.20 × 0.20 × 0.05 mm

Data collection

Bruker APEXII CCD diffractometer5331 independent reflections
Radiation source: fine-focus sealed tube4841 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.032
T = 125(2) Kθmax = 28.3º
[var phi] and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Bruker, 2007)h = −24→24
Tmin = 0.535, Tmax = 0.842k = −15→15
53839 measured reflectionsl = −25→25

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.048  w = 1/[σ2(Fo2) + (0.0232P)2 + 4.4313P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5331 reflectionsΔρmax = 0.56 e Å3
235 parametersΔρmin = −0.49 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. A suitable crystal was mounted in a nylon loop with Paratone-N cryoprotectant oil and data was collected on a Bruker APEX 2 CCD platform diffractometer. The structure was solved using direct methods and standard difference map techniques, and was refined by full-matrix least-squares procedures on F2 with SHELXTL Version 6.14 (Sheldrick, 2008). All non-hydrogen atoms were refined anisotropically. Refinement of F2 against ALL reflections. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. EXTI refined to zero and was removed from the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn0.00000.50000.50000.01453 (5)
I10.071249 (8)0.378968 (13)0.399124 (8)0.02266 (4)
I20.042286 (8)0.699279 (12)0.434117 (8)0.02186 (4)
O1−0.09443 (8)0.50578 (13)0.43516 (8)0.0188 (3)
P1−0.15379 (3)0.44482 (5)0.39642 (3)0.01603 (11)
C1−0.17934 (12)0.52832 (19)0.32327 (11)0.0194 (4)
C2−0.23667 (13)0.4945 (2)0.28165 (13)0.0265 (5)
H2A−0.26050.42590.29100.032*
C3−0.25902 (13)0.5601 (2)0.22692 (13)0.0266 (5)
H3A−0.29760.53550.19850.032*
C4−0.22576 (12)0.6619 (2)0.21282 (12)0.0221 (5)
C5−0.25292 (14)0.7344 (2)0.15496 (13)0.0291 (5)
H5A−0.22050.79820.14880.044*
H5B−0.30120.76150.16630.044*
H5C−0.25470.69080.11210.044*
C6−0.16762 (13)0.6945 (2)0.25375 (13)0.0242 (5)
H6A−0.14330.76240.24380.029*
C7−0.14473 (13)0.6286 (2)0.30905 (12)0.0222 (5)
H7A−0.10550.65220.33690.027*
C8−0.23153 (12)0.43203 (19)0.45048 (11)0.0181 (4)
C9−0.24193 (13)0.5130 (2)0.50135 (12)0.0224 (5)
H9A−0.20600.56790.50920.027*
C10−0.30407 (13)0.5139 (2)0.54033 (13)0.0245 (5)
H10A−0.31030.56960.57480.029*
C11−0.35776 (13)0.4346 (2)0.53003 (13)0.0242 (5)
C12−0.42613 (15)0.4397 (2)0.57128 (16)0.0351 (6)
H12A−0.44450.51650.57130.053*
H12B−0.41660.41610.61890.053*
H12C−0.46200.38990.55050.053*
C13−0.34695 (13)0.3523 (2)0.47927 (13)0.0238 (5)
H13A−0.38270.29700.47190.029*
C14−0.28479 (12)0.3509 (2)0.43988 (12)0.0209 (4)
H14A−0.27820.29480.40560.025*
C15−0.12942 (12)0.31033 (19)0.36393 (11)0.0181 (4)
C16−0.13571 (12)0.21535 (19)0.40494 (12)0.0204 (4)
H16A−0.15730.22050.44940.024*
C17−0.11054 (14)0.1132 (2)0.38123 (13)0.0246 (5)
H17A−0.11590.04860.40940.029*
C18−0.07758 (14)0.1039 (2)0.31675 (13)0.0275 (5)
C19−0.05059 (18)−0.0075 (3)0.29219 (16)0.0406 (7)
H19A−0.00210.00110.27310.061*
H19B−0.0828−0.03650.25630.061*
H19C−0.0492−0.05990.33110.061*
C20−0.07179 (14)0.1986 (2)0.27588 (13)0.0293 (5)
H20A−0.04990.19320.23160.035*
C21−0.09738 (13)0.3010 (2)0.29838 (12)0.0249 (5)
H21A−0.09330.36490.26950.030*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn0.01273 (9)0.01808 (10)0.01278 (9)−0.00027 (7)0.00002 (7)0.00045 (7)
I10.02116 (8)0.02856 (9)0.01826 (7)0.00429 (6)0.00170 (5)−0.00372 (6)
I20.02329 (8)0.02232 (8)0.01999 (8)−0.00454 (6)0.00017 (6)0.00311 (6)
O10.0151 (7)0.0217 (8)0.0195 (8)−0.0017 (6)−0.0029 (6)0.0009 (6)
P10.0144 (2)0.0187 (3)0.0150 (3)−0.0020 (2)−0.0015 (2)0.0013 (2)
C10.0182 (10)0.0223 (11)0.0177 (10)−0.0002 (9)−0.0020 (8)0.0027 (8)
C20.0247 (12)0.0271 (12)0.0276 (12)−0.0088 (10)−0.0078 (10)0.0076 (10)
C30.0203 (11)0.0366 (14)0.0229 (12)−0.0047 (10)−0.0068 (9)0.0041 (10)
C40.0193 (10)0.0288 (12)0.0182 (11)0.0042 (9)0.0010 (9)0.0037 (9)
C50.0272 (12)0.0343 (14)0.0259 (12)0.0038 (11)−0.0023 (10)0.0100 (11)
C60.0237 (11)0.0236 (11)0.0253 (12)−0.0030 (9)0.0001 (9)0.0056 (9)
C70.0202 (11)0.0246 (12)0.0216 (11)−0.0041 (9)−0.0039 (9)0.0009 (9)
C80.0158 (10)0.0217 (11)0.0169 (10)−0.0011 (8)−0.0010 (8)0.0022 (8)
C90.0197 (11)0.0244 (11)0.0231 (11)−0.0022 (9)−0.0029 (9)−0.0030 (9)
C100.0249 (11)0.0270 (12)0.0215 (11)0.0029 (10)0.0007 (9)−0.0019 (9)
C110.0209 (11)0.0264 (12)0.0254 (12)0.0024 (9)0.0041 (9)0.0062 (10)
C120.0284 (13)0.0333 (14)0.0436 (16)0.0016 (11)0.0146 (12)−0.0003 (12)
C130.0200 (11)0.0226 (11)0.0289 (12)−0.0052 (9)−0.0005 (9)0.0041 (10)
C140.0197 (11)0.0209 (11)0.0220 (11)−0.0013 (9)−0.0012 (9)−0.0009 (9)
C150.0169 (10)0.0214 (11)0.0161 (10)−0.0022 (8)−0.0013 (8)−0.0020 (8)
C160.0213 (11)0.0228 (11)0.0172 (10)−0.0007 (9)−0.0009 (9)−0.0010 (8)
C170.0297 (12)0.0204 (11)0.0236 (12)−0.0003 (9)−0.0027 (10)−0.0011 (9)
C180.0270 (12)0.0315 (13)0.0239 (12)0.0038 (10)−0.0072 (10)−0.0113 (10)
C190.0497 (17)0.0370 (16)0.0350 (15)0.0097 (13)−0.0074 (13)−0.0184 (12)
C200.0285 (13)0.0412 (15)0.0183 (11)0.0026 (11)0.0011 (10)−0.0072 (10)
C210.0251 (12)0.0301 (13)0.0193 (11)−0.0016 (10)0.0018 (9)−0.0005 (10)

Geometric parameters (Å, °)

Sn—O12.1590 (15)C9—C101.380 (3)
Sn—O1i2.1591 (15)C9—H9A0.9500
Sn—I12.76735 (17)C10—C111.392 (3)
Sn—I1i2.76737 (17)C10—H10A0.9500
Sn—I2i2.81580 (19)C11—C131.404 (4)
Sn—I22.8158 (2)C11—C121.502 (3)
O1—P11.5207 (16)C12—H12A0.9800
P1—C151.786 (2)C12—H12B0.9800
P1—C81.791 (2)C12—H12C0.9800
P1—C11.796 (2)C13—C141.385 (3)
C1—C71.389 (3)C13—H13A0.9500
C1—C21.396 (3)C14—H14A0.9500
C2—C31.382 (3)C15—C161.391 (3)
C2—H2A0.9500C15—C211.405 (3)
C3—C41.393 (4)C16—C171.387 (3)
C3—H3A0.9500C16—H16A0.9500
C4—C61.396 (3)C17—C181.394 (4)
C4—C51.503 (3)C17—H17A0.9500
C5—H5A0.9800C18—C201.387 (4)
C5—H5B0.9800C18—C191.502 (4)
C5—H5C0.9800C19—H19A0.9800
C6—C71.395 (3)C19—H19B0.9800
C6—H6A0.9500C19—H19C0.9800
C7—H7A0.9500C20—C211.384 (4)
C8—C91.394 (3)C20—H20A0.9500
C8—C141.402 (3)C21—H21A0.9500
O1—Sn—O1i180.0C9—C8—P1117.67 (17)
O1—Sn—I189.84 (4)C14—C8—P1122.98 (17)
O1—Sn—I189.84 (4)C10—C9—C8120.5 (2)
O1i—Sn—I190.16 (4)C10—C9—H9A119.8
O1—Sn—I1i90.16 (4)C8—C9—H9A119.8
O1i—Sn—I1i89.84 (4)C9—C10—C11121.2 (2)
I1—Sn—I1i180.0C9—C10—H10A119.4
O1—Sn—I2i93.59 (4)C11—C10—H10A119.4
O1i—Sn—I2i86.41 (4)C10—C11—C13118.4 (2)
I1—Sn—I2i90.529 (6)C10—C11—C12120.2 (2)
I1i—Sn—I2i89.471 (6)C13—C11—C12121.4 (2)
O1—Sn—I286.41 (4)C11—C12—H12A109.5
O1i—Sn—I293.59 (4)C11—C12—H12B109.5
I1—Sn—I289.469 (6)H12A—C12—H12B109.5
I1i—Sn—I290.531 (6)C11—C12—H12C109.5
I2i—Sn—I2180.0H12A—C12—H12C109.5
P1—O1—Sn149.47 (10)H12B—C12—H12C109.5
O1—P1—C15114.91 (10)C14—C13—C11120.8 (2)
O1—P1—C8109.87 (10)C14—C13—H13A119.6
C15—P1—C8109.46 (11)C11—C13—H13A119.6
O1—P1—C1108.25 (10)C13—C14—C8120.1 (2)
C15—P1—C1106.96 (11)C13—C14—H14A120.0
C8—P1—C1107.07 (10)C8—C14—H14A120.0
C7—C1—C2119.4 (2)C16—C15—C21119.0 (2)
C7—C1—P1120.92 (17)C16—C15—P1120.96 (17)
C2—C1—P1119.66 (17)C21—C15—P1119.77 (18)
C3—C2—C1120.4 (2)C17—C16—C15120.2 (2)
C3—C2—H2A119.8C17—C16—H16A119.9
C1—C2—H2A119.8C15—C16—H16A119.9
C2—C3—C4120.9 (2)C16—C17—C18121.0 (2)
C2—C3—H3A119.6C16—C17—H17A119.5
C4—C3—H3A119.6C18—C17—H17A119.5
C3—C4—C6118.5 (2)C20—C18—C17118.6 (2)
C3—C4—C5120.1 (2)C20—C18—C19121.3 (2)
C6—C4—C5121.4 (2)C17—C18—C19120.1 (3)
C4—C5—H5A109.5C18—C19—H19A109.5
C4—C5—H5B109.5C18—C19—H19B109.5
H5A—C5—H5B109.5H19A—C19—H19B109.5
C4—C5—H5C109.5C18—C19—H19C109.5
H5A—C5—H5C109.5H19A—C19—H19C109.5
H5B—C5—H5C109.5H19B—C19—H19C109.5
C7—C6—C4120.9 (2)C21—C20—C18121.2 (2)
C7—C6—H6A119.6C21—C20—H20A119.4
C4—C6—H6A119.6C18—C20—H20A119.4
C1—C7—C6119.9 (2)C20—C21—C15120.0 (2)
C1—C7—H7A120.1C20—C21—H21A120.0
C6—C7—H7A120.0C15—C21—H21A120.0
C9—C8—C14119.1 (2)
I1—Sn—O1—P160.78 (19)C1—P1—C8—C1484.5 (2)
I1i—Sn—O1—P1−119.22 (19)C14—C8—C9—C10−0.6 (3)
I2i—Sn—O1—P1−29.74 (19)P1—C8—C9—C10173.90 (18)
I2—Sn—O1—P1150.26 (19)C8—C9—C10—C110.0 (4)
Sn—O1—P1—C15−31.2 (2)C9—C10—C11—C130.7 (4)
Sn—O1—P1—C892.7 (2)C9—C10—C11—C12−177.7 (2)
Sn—O1—P1—C1−150.70 (18)C10—C11—C13—C14−0.7 (4)
O1—P1—C1—C71.8 (2)C12—C11—C13—C14177.7 (2)
C15—P1—C1—C7−122.5 (2)C11—C13—C14—C80.1 (4)
C8—P1—C1—C7120.2 (2)C9—C8—C14—C130.5 (3)
O1—P1—C1—C2−175.57 (19)P1—C8—C14—C13−173.65 (18)
C15—P1—C1—C260.1 (2)O1—P1—C15—C1686.7 (2)
C8—P1—C1—C2−57.2 (2)C8—P1—C15—C16−37.4 (2)
C7—C1—C2—C3−0.2 (4)C1—P1—C15—C16−153.10 (19)
P1—C1—C2—C3177.2 (2)O1—P1—C15—C21−87.5 (2)
C1—C2—C3—C4−1.1 (4)C8—P1—C15—C21148.36 (18)
C2—C3—C4—C62.2 (4)C1—P1—C15—C2132.7 (2)
C2—C3—C4—C5−177.3 (2)C21—C15—C16—C170.1 (3)
C3—C4—C6—C7−2.2 (4)P1—C15—C16—C17−174.16 (18)
C5—C4—C6—C7177.4 (2)C15—C16—C17—C181.1 (4)
C2—C1—C7—C60.3 (4)C16—C17—C18—C20−1.4 (4)
P1—C1—C7—C6−177.14 (19)C16—C17—C18—C19179.9 (2)
C4—C6—C7—C10.9 (4)C17—C18—C20—C210.6 (4)
O1—P1—C8—C927.6 (2)C19—C18—C20—C21179.3 (3)
C15—P1—C8—C9154.69 (18)C18—C20—C21—C150.5 (4)
C1—P1—C8—C9−89.72 (19)C16—C15—C21—C20−0.9 (3)
O1—P1—C8—C14−158.13 (18)P1—C15—C21—C20173.47 (19)
C15—P1—C8—C14−31.1 (2)

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2089).

References

  • Bruker (2007). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Caldwell, A. M. & Tanski, J. M. (2008). Acta Cryst. E64, m894. [PMC free article] [PubMed]
  • Davis, M. F., Clarke, M., Levason, W., Reid, G. & Webster, M. (2006). Eur. J. Inorg. Chem. pp. 2773–2782.
  • Davis, M. F., Levason, W., Reid, G. & Webster, M. (2006). Polyhedron, 25, 930–936.
  • Genge, A. R. J., Levason, W. & Reid, G. (1999). Inorg. Chim. Acta, 288, 142–149.
  • Levason, W., Patel, R. & Reid, G. (2003). J. Organomet. Chem.688, 280–282.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Szymanska-Buzar, T., Glowiak, T. & Czelusniak, I. (2001). Main Group Met. Chem.24, 821–822.
  • Tudela, D., Tornero, J. D., Monge, A. & Sánchez–Herencia, A. J. (1993). Inorg. Chem.32, 392, 3928–3930.
  • Tursina, A. I., Aslanov, L. A., Chernyshev, V. V., Medvedev, S. V. & Yatsenko, A. V. (1986). Koord. Khim.12, 420–424.
  • Tursina, A. I., Aslanov, L. A., Medvedev, S. V. & Yatsenko, A. V. (1985). Koord. Khim.11, 417–424.
  • Tursina, A. I., Yatsenko, A. V., Medvedev, S. V., Chernyshev, V. V. & Aslanov, L. A. (1986). Zh. Strukt. Khim.27, 157–159.
  • Woollins, J. D. (2003). Inorganic Experiments, 2nd ed., edited by J. D. Woollins, pp. 36–37. Weinheim: Wiley.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography