PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1749.
Published online 2008 August 13. doi:  10.1107/S1600536808024847
PMCID: PMC2960701

4-Ethoxy­pyridin-2-amine

Abstract

The title compound, C7H10N2O, crystallizes with two independent mol­ecules in the asymmetric unit. The bond lengths and angles in the mol­ecules are within normal ranges. The crystal structure is stabilized by inter­molecular N—H(...)N hydrogen bonds, linking the two independent mol­ecules into hydrogen-bonded dimers.

Related literature

For related literatures, see: Cai et al. (2006 [triangle]); Yale (1976 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1749-scheme1.jpg

Experimental

Crystal data

  • C7H10N2O
  • M r = 138.17
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1749-efi1.jpg
  • a = 9.167 (2) Å
  • b = 9.470 (2) Å
  • c = 9.541 (3) Å
  • α = 87.716 (3)°
  • β = 87.714 (4)°
  • γ = 64.189 (3)°
  • V = 744.8 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 (2) K
  • 0.60 × 0.38 × 0.31 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.901, T max = 0.974
  • 3749 measured reflections
  • 2582 independent reflections
  • 2110 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.123
  • S = 1.02
  • 2582 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808024847/bx2167sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024847/bx2167Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

2-Amino-4-ethoxypyridine is a useful intermediate for the synthesis of various heterocyclic compounds (Cai et al., 2006; Yale, 1976). In this paper, we report the crystal structure of the title compound (I). The title compound crystallizes with two independent molecules in the asymmetric unit. All bond lengths are normal (Allen et al., 1987). Intermolecular N—H···N hydrogen bonds link the two independent molecules into hydrogen-bonded dimers. The crystal packing is further stabilized by van der Waals forces.

Experimental

2-amino-4-chloropyridine (12.9 g, 0.1 mol) and sodium ethoxide (12.8 g, 0.2 mol) were reacted in 100 ml ethanol in a stainless steel bomb at 150°C for 3 h. The desired compound was obtained as a slightly yellow solid in 50% yield (1.9 g). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution in a hexane/dichloromethane mixture (1:4 v/v) at room temperature over a period of one week.

Refinement

H atoms bonded to N atoms were located in a difference map and refined with distance restraints of N—H = 0.86Å, and with Uiso(H) = 1.2Ueq(N). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Figures

Fig. 1.
View of the title compound (I), with displacement ellipsoids drawn at the 40% probability level.
Fig. 2.
Packing diagram of structure of (I), view along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C7H10N2OZ = 4
Mr = 138.17F000 = 296
Triclinic, P1Dx = 1.232 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 9.167 (2) ÅCell parameters from 1699 reflections
b = 9.470 (2) Åθ = 2.8–23.1º
c = 9.541 (3) ŵ = 0.09 mm1
α = 87.716 (3)ºT = 298 (2) K
β = 87.714 (4)ºBlock, yellow
γ = 64.189 (3)º0.60 × 0.38 × 0.31 mm
V = 744.8 (3) Å3

Data collection

Bruker SMART CCD area-detector diffractometer2582 independent reflections
Radiation source: fine-focus sealed tube2110 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.018
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 2004)h = −10→10
Tmin = 0.901, Tmax = 0.974k = −10→11
3749 measured reflectionsl = −11→7

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043  w = 1/[σ2(Fo2) + (0.0632P)2 + 0.1056P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.18 e Å3
2582 reflectionsΔρmin = −0.16 e Å3
182 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.040 (5)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.59961 (14)0.31435 (14)0.17306 (12)0.0647 (3)
O20.09387 (12)0.83919 (12)0.15720 (11)0.0568 (3)
N10.93140 (16)0.44443 (15)0.33834 (14)0.0559 (4)
N20.8694 (2)0.3953 (2)0.56360 (15)0.0763 (5)
H2B0.94180.42210.59100.092*
H2C0.81500.36660.62420.092*
N30.44815 (15)0.88727 (15)0.37838 (14)0.0557 (4)
N40.26244 (17)1.10399 (17)0.49027 (15)0.0703 (5)
H4B0.34101.10610.53500.084*
H4C0.16491.17360.50560.084*
C10.84095 (18)0.39828 (17)0.42438 (16)0.0516 (4)
C20.72722 (18)0.35088 (17)0.37698 (16)0.0521 (4)
H2A0.66690.31890.44010.063*
C30.70648 (18)0.35259 (17)0.23495 (16)0.0508 (4)
C40.8027 (2)0.39719 (19)0.14405 (17)0.0576 (4)
H4A0.79380.39700.04730.069*
C50.9098 (2)0.44086 (19)0.20049 (17)0.0586 (4)
H5A0.97310.47070.13890.070*
C60.4922 (2)0.2715 (2)0.25818 (19)0.0682 (5)
H6A0.43400.35190.32600.082*
H6B0.55280.17320.30850.082*
C70.3764 (3)0.2550 (3)0.1622 (2)0.0951 (7)
H7A0.30230.22630.21590.143*
H7B0.43540.17520.09570.143*
H7C0.31710.35300.11320.143*
C80.29236 (18)0.99108 (18)0.39569 (15)0.0506 (4)
C90.16603 (18)0.98351 (18)0.32351 (16)0.0511 (4)
H9A0.05941.05730.33800.061*
C100.20318 (18)0.86432 (17)0.23054 (15)0.0480 (4)
C110.36506 (19)0.75665 (18)0.21075 (17)0.0568 (4)
H11A0.39410.67530.14830.068*
C120.47882 (19)0.77452 (19)0.28565 (18)0.0596 (4)
H12A0.58640.70290.27140.072*
C13−0.07465 (19)0.9457 (2)0.17306 (18)0.0605 (4)
H13A−0.09391.04860.13480.073*
H13B−0.10690.95570.27160.073*
C14−0.1699 (2)0.8813 (2)0.0962 (2)0.0806 (6)
H14A−0.28320.95080.10490.121*
H14B−0.15070.77990.13520.121*
H14C−0.13710.8718−0.00120.121*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0665 (7)0.0772 (8)0.0598 (7)−0.0395 (7)−0.0091 (6)−0.0017 (6)
O20.0522 (6)0.0562 (7)0.0601 (7)−0.0206 (5)−0.0068 (5)−0.0106 (5)
N10.0577 (8)0.0564 (8)0.0557 (8)−0.0264 (7)−0.0021 (6)−0.0038 (6)
N20.1046 (12)0.0994 (12)0.0514 (8)−0.0687 (11)−0.0128 (8)0.0064 (8)
N30.0489 (7)0.0531 (8)0.0580 (8)−0.0148 (6)−0.0073 (6)−0.0054 (6)
N40.0526 (8)0.0734 (10)0.0741 (10)−0.0143 (7)−0.0102 (7)−0.0284 (8)
C10.0562 (9)0.0425 (8)0.0532 (9)−0.0186 (7)−0.0054 (7)−0.0003 (6)
C20.0557 (9)0.0466 (9)0.0535 (9)−0.0219 (7)−0.0009 (7)0.0002 (7)
C30.0501 (8)0.0418 (8)0.0572 (9)−0.0164 (7)−0.0049 (7)−0.0040 (7)
C40.0648 (10)0.0591 (10)0.0486 (9)−0.0263 (8)−0.0019 (7)−0.0045 (7)
C50.0624 (10)0.0625 (10)0.0538 (9)−0.0303 (8)0.0052 (7)−0.0040 (7)
C60.0628 (10)0.0736 (12)0.0730 (11)−0.0342 (9)−0.0093 (9)0.0062 (9)
C70.0799 (14)0.1224 (19)0.1023 (16)−0.0620 (14)−0.0346 (12)0.0319 (14)
C80.0507 (9)0.0497 (9)0.0464 (8)−0.0167 (7)−0.0048 (6)−0.0018 (7)
C90.0450 (8)0.0487 (9)0.0523 (8)−0.0130 (7)−0.0030 (6)−0.0040 (7)
C100.0515 (8)0.0476 (8)0.0451 (8)−0.0216 (7)−0.0043 (6)0.0023 (6)
C110.0557 (9)0.0493 (9)0.0603 (9)−0.0172 (8)0.0001 (7)−0.0118 (7)
C120.0481 (9)0.0513 (9)0.0693 (10)−0.0116 (7)−0.0018 (8)−0.0083 (8)
C130.0528 (9)0.0603 (10)0.0650 (10)−0.0207 (8)−0.0045 (8)−0.0074 (8)
C140.0627 (11)0.0813 (13)0.1024 (15)−0.0335 (10)−0.0108 (10)−0.0174 (11)

Geometric parameters (Å, °)

O1—C31.3460 (19)C5—H5A0.9300
O1—C61.433 (2)C6—C71.490 (3)
O2—C101.3518 (18)C6—H6A0.9700
O2—C131.4364 (19)C6—H6B0.9700
N1—C11.336 (2)C7—H7A0.9600
N1—C51.342 (2)C7—H7B0.9600
N2—C11.361 (2)C7—H7C0.9600
N2—H2B0.8600C8—C91.400 (2)
N2—H2C0.8600C9—C101.378 (2)
N3—C121.340 (2)C9—H9A0.9300
N3—C81.3434 (19)C10—C111.397 (2)
N4—C81.3545 (19)C11—C121.360 (2)
N4—H4B0.8600C11—H11A0.9300
N4—H4C0.8600C12—H12A0.9300
C1—C21.398 (2)C13—C141.491 (2)
C2—C31.374 (2)C13—H13A0.9700
C2—H2A0.9300C13—H13B0.9700
C3—C41.394 (2)C14—H14A0.9600
C4—C51.355 (2)C14—H14B0.9600
C4—H4A0.9300C14—H14C0.9600
C3—O1—C6119.52 (13)C6—C7—H7B109.5
C10—O2—C13118.61 (11)H7A—C7—H7B109.5
C1—N1—C5116.21 (13)C6—C7—H7C109.5
C1—N2—H2B120.0H7A—C7—H7C109.5
C1—N2—H2C120.0H7B—C7—H7C109.5
H2B—N2—H2C120.0N3—C8—N4116.04 (14)
C12—N3—C8116.47 (13)N3—C8—C9122.94 (14)
C8—N4—H4B120.0N4—C8—C9121.01 (14)
C8—N4—H4C120.0C10—C9—C8118.52 (14)
H4B—N4—H4C120.0C10—C9—H9A120.7
N1—C1—N2115.68 (14)C8—C9—H9A120.7
N1—C1—C2123.24 (14)O2—C10—C9125.11 (14)
N2—C1—C2121.06 (15)O2—C10—C11115.89 (13)
C3—C2—C1118.51 (14)C9—C10—C11118.98 (14)
C3—C2—H2A120.7C12—C11—C10117.94 (14)
C1—C2—H2A120.7C12—C11—H11A121.0
O1—C3—C2125.72 (14)C10—C11—H11A121.0
O1—C3—C4115.54 (14)N3—C12—C11125.14 (15)
C2—C3—C4118.74 (14)N3—C12—H12A117.4
C5—C4—C3118.19 (15)C11—C12—H12A117.4
C5—C4—H4A120.9O2—C13—C14107.85 (14)
C3—C4—H4A120.9O2—C13—H13A110.1
N1—C5—C4125.08 (15)C14—C13—H13A110.1
N1—C5—H5A117.5O2—C13—H13B110.1
C4—C5—H5A117.5C14—C13—H13B110.1
O1—C6—C7107.17 (15)H13A—C13—H13B108.4
O1—C6—H6A110.3C13—C14—H14A109.5
C7—C6—H6A110.3C13—C14—H14B109.5
O1—C6—H6B110.3H14A—C14—H14B109.5
C7—C6—H6B110.3C13—C14—H14C109.5
H6A—C6—H6B108.5H14A—C14—H14C109.5
C6—C7—H7A109.5H14B—C14—H14C109.5
C5—N1—C1—N2177.01 (15)C12—N3—C8—N4179.60 (15)
C5—N1—C1—C2−1.1 (2)C12—N3—C8—C90.8 (2)
N1—C1—C2—C3−0.4 (2)N3—C8—C9—C100.0 (2)
N2—C1—C2—C3−178.37 (15)N4—C8—C9—C10−178.74 (15)
C6—O1—C3—C21.9 (2)C13—O2—C10—C91.6 (2)
C6—O1—C3—C4−178.15 (14)C13—O2—C10—C11179.93 (13)
C1—C2—C3—O1−178.26 (14)C8—C9—C10—O2177.69 (14)
C1—C2—C3—C41.8 (2)C8—C9—C10—C11−0.6 (2)
O1—C3—C4—C5178.35 (14)O2—C10—C11—C12−178.04 (14)
C2—C3—C4—C5−1.7 (2)C9—C10—C11—C120.4 (2)
C1—N1—C5—C41.2 (2)C8—N3—C12—C11−1.1 (3)
C3—C4—C5—N10.2 (3)C10—C11—C12—N30.5 (3)
C3—O1—C6—C7173.22 (16)C10—O2—C13—C14−173.07 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2B···N1i0.862.193.029 (2)164
N4—H4B···N3ii0.862.163.013 (2)173

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2167).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cai, L., Brouwer, C., Sinclair, K., Cuevas, J. & Pike, V. W. (2006). Synthesis, pp. 133–145.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yale, H. L. (1976). US patent 3 965 100.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography