PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1661.
Published online 2008 August 6. doi:  10.1107/S1600536808024082
PMCID: PMC2960699

4-[(2-Fluoro­phen­yl)amino]-4-oxo­butanoic acid

Abstract

The crystal structure of the title compound, C10H10FNO3, contains dimers of the asymmetric unit, with R 2 2(8) rings arising from inter­molecular O—H(...)O hydrogen bonding through the carboxyl­ate groups. Adjacent dimeric units are connected to each other through one N—H(...)O and two C—H(...)O inter­molecular hydrogen bonds. C—H(...)O hydrogen bonds involving the aromatic ring and the O atoms of two carboxyl­ate groups form an R 3 3(7) ring. The crystal structure is further stabilized by C—H(...)F inter­actions, giving rise to a three-dimensional network.

Related literature

For related literature, see: Bernstein et al. (1995 [triangle]); Shah et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1661-scheme1.jpg

Experimental

Crystal data

  • C10H10FNO3
  • M r = 211.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1661-efi3.jpg
  • a = 4.8054 (3) Å
  • b = 19.0399 (13) Å
  • c = 11.0429 (8) Å
  • β = 101.821 (3)°
  • V = 988.94 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 296 (2) K
  • 0.25 × 0.15 × 0.10 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.975, T max = 0.989
  • 11668 measured reflections
  • 2550 independent reflections
  • 1366 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.144
  • S = 1.01
  • 2550 reflections
  • 142 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808024082/fj2135sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024082/fj2135Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commision, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore. SA is also thankful to PSF for financial support under project No. PSF/R&D/C-QU/Chem(270).

supplementary crystallographic information

Comment

The title compound (I) results from our continuing studies into the synthesis of carboxylic acids having the possibility of coordination with more donor atoms (Shah, et al., 2008). The purpose of synthesizing (I) was to make complexes with various metals and to study the biological activity at large.

The structures of (II) 3-(3,5-dichloroanilinocarbonyl)propionic acid (Shah, et al., 2008) is the best example for comparison of geometry. In (I) the C=O bond distances for carboxylate and carbonyl group have values of (C1=O2: 1.215 (2) Å) and (C4=O3: 1.223 (2) Å) in comparison to 1.219 (3) Å and 1.225 (2) Å, respectively. The C—N bond distances are compareable within experimental errors. The crystal structure of (I) consists of cetro-symmetric dimers forming R22(8) ring (Bernstein, et al., 1995), through intermolecular H-bonding (Table 1). The adjacent dimers are connected to each other through two C—H···O intermolecular H-bonds forming R33(7) ring [O—H···O···H—C—C—H···O] as shown in Fig 2. In (I) and (II), there is similarity of H-bonding between the amino and carbonyl group. There are C—H···F interaction also (Table 1) which stabilize the title molecule. The dihedral angle between the aromatic ring (C5—C10) and (C1,C2,C3,O1,O2) have a value of 58.87 (6)°, whereas with (N1,C3,C4,O3) its value is 51.09 (16)°. The value of dihedral angle between (C1,C2,C3,O1,O2) and (N1,C3,C4,O3) is 74.17 (13)°.

Experimental

2-Fluoroaniline (0.1 mole, 9.56 ml) was dissolved in 30 ml of glacial acetic acid. A solution of succinic anhydride (10 g, 0.1 mole) in 50 ml glacial acetic acid was added and the mixture was stirred overnight. The precipitate which appeared was filtered, washed with distilled water and dried at 313–315 K. The acid was recrystallized from acetone. (Yield: 85%, m.p: 435 K)

Refinement

The coordinates of H-atom attached with O1 and N1 were refined. The H-atoms attached with C-atoms were positioned geometrically, C—H = 0.93, and 0.97 Å for aromatic and methylene H, and constrained to ride on their parent atoms. The H-atoms were treated as isotropic with Uiso(H) = xUeq(C, N, O), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1.
ORTEP-3 for Windows (Farrugia, 1997) drawing of the title compound, C10H10FNO3 with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii.
Fig. 2.
The partial unit cell packing of (I) (Spek, 2003) with only H-atoms which are involved in H-bonding, showing the dimeric nature formig R22(8) ring, forming R33(7) ring through intermolecular H-bonds and the linkage of dimers through H-bonds of N—H···O ...

Crystal data

C10H10FNO3F000 = 440
Mr = 211.19Dx = 1.418 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2550 reflections
a = 4.8054 (3) Åθ = 2.1–28.7º
b = 19.0399 (13) ŵ = 0.12 mm1
c = 11.0429 (8) ÅT = 296 (2) K
β = 101.821 (3)ºNeedle, colorless
V = 988.94 (12) Å30.25 × 0.15 × 0.10 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer2550 independent reflections
Radiation source: fine-focus sealed tube1366 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.038
Detector resolution: 7.4 pixels mm-1θmax = 28.7º
T = 296(2) Kθmin = 2.1º
ω scansh = −6→5
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −25→25
Tmin = 0.975, Tmax = 0.989l = −14→14
11668 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.145  w = 1/[σ2(Fo2) + (0.0685P)2 + 0.1019P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2550 reflectionsΔρmax = 0.26 e Å3
142 parametersΔρmin = −0.20 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
F11.0488 (3)0.33085 (7)0.62407 (12)0.0777 (5)
O10.0318 (3)0.56812 (8)0.11407 (14)0.0633 (6)
O20.2963 (3)0.47537 (8)0.09700 (14)0.0675 (6)
O30.2983 (3)0.42965 (8)0.37996 (15)0.0638 (6)
N10.7391 (3)0.38295 (8)0.40847 (14)0.0419 (5)
C10.2503 (4)0.52781 (10)0.15251 (18)0.0422 (6)
C20.4378 (4)0.55192 (10)0.26901 (19)0.0484 (6)
C30.6657 (4)0.49982 (10)0.32502 (19)0.0469 (6)
C40.5482 (3)0.43475 (10)0.37282 (16)0.0400 (6)
C50.6718 (4)0.31736 (9)0.45548 (17)0.0381 (6)
C60.8291 (4)0.29162 (10)0.56401 (18)0.0470 (6)
C70.7714 (5)0.22849 (12)0.6121 (2)0.0671 (8)
C80.5497 (5)0.18915 (12)0.5515 (2)0.0681 (9)
C90.3881 (5)0.21314 (11)0.4428 (2)0.0643 (8)
C100.4499 (4)0.27661 (11)0.39432 (19)0.0542 (7)
H1−0.070 (5)0.5532 (12)0.046 (2)0.0759*
H1A0.916 (4)0.3921 (10)0.4045 (18)0.0503*
H2A0.321390.561960.329030.0581*
H2B0.528670.595430.252770.0581*
H3A0.772410.486550.262940.0563*
H3B0.796320.522300.392500.0563*
H70.882850.212480.685920.0805*
H80.508240.146200.583830.0817*
H90.235820.186500.401360.0771*
H100.340850.292090.319620.0650*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F10.0646 (8)0.0765 (9)0.0763 (9)−0.0227 (7)−0.0221 (7)0.0104 (7)
O10.0610 (10)0.0615 (10)0.0597 (10)0.0270 (8)−0.0055 (7)−0.0027 (7)
O20.0655 (10)0.0638 (10)0.0645 (10)0.0308 (8)−0.0073 (8)−0.0113 (8)
O30.0265 (7)0.0653 (10)0.1013 (12)0.0009 (6)0.0170 (7)0.0277 (8)
N10.0247 (7)0.0430 (9)0.0571 (10)−0.0037 (7)0.0065 (7)0.0100 (7)
C10.0396 (10)0.0384 (11)0.0494 (11)0.0076 (9)0.0113 (9)0.0120 (9)
C20.0434 (10)0.0409 (10)0.0591 (12)−0.0036 (9)0.0060 (9)0.0057 (9)
C30.0335 (9)0.0497 (11)0.0552 (12)−0.0062 (8)0.0034 (9)0.0103 (9)
C40.0278 (8)0.0474 (11)0.0433 (10)−0.0045 (8)0.0038 (7)0.0057 (8)
C50.0311 (9)0.0373 (10)0.0465 (10)−0.0036 (8)0.0094 (8)0.0014 (8)
C60.0396 (10)0.0451 (11)0.0525 (11)−0.0081 (9)0.0007 (9)0.0020 (9)
C70.0680 (15)0.0628 (15)0.0654 (14)−0.0041 (13)0.0018 (12)0.0211 (12)
C80.0742 (16)0.0465 (12)0.0866 (18)−0.0138 (12)0.0233 (14)0.0113 (12)
C90.0606 (13)0.0506 (13)0.0804 (16)−0.0227 (11)0.0114 (12)−0.0102 (12)
C100.0496 (12)0.0540 (13)0.0551 (12)−0.0146 (10)0.0014 (9)0.0000 (10)

Geometric parameters (Å, °)

F1—C61.351 (2)C6—C71.365 (3)
O1—C11.300 (2)C7—C81.361 (3)
O2—C11.215 (2)C8—C91.368 (3)
O3—C41.223 (2)C9—C101.379 (3)
O1—H10.86 (2)C2—H2A0.9700
N1—C41.350 (2)C2—H2B0.9700
N1—C51.415 (2)C3—H3A0.9700
N1—H1A0.88 (2)C3—H3B0.9700
C1—C21.484 (3)C7—H70.9300
C2—C31.513 (3)C8—H80.9300
C3—C41.502 (3)C9—H90.9300
C5—C101.378 (3)C10—H100.9300
C5—C61.370 (3)
F1···N12.723 (2)C6···C9vii3.566 (3)
F1···C2i3.357 (2)C9···O1viii3.402 (3)
F1···H1A2.648 (19)C9···C6v3.566 (3)
F1···H2Aii2.8200C10···O33.000 (3)
F1···H2Bi2.6100C1···H1iii2.68 (2)
O1···O2iii2.664 (2)C1···H3Av2.9200
O1···C9iv3.402 (3)C4···H102.9100
O2···C1iii3.396 (2)H1···O2iii1.81 (2)
O2···C43.135 (2)H1···C1iii2.68 (2)
O2···O1iii2.664 (2)H1···H1iii2.42 (3)
O3···C3v3.262 (2)H1A···F12.648 (19)
O3···C13.101 (3)H1A···O3vii2.04 (2)
O3···N1v2.908 (2)H1A···H3A2.3900
O3···C103.000 (3)H1A···H3B2.5400
O1···H9iv2.5800H2A···O32.5900
O1···H3Av2.7400H2A···F1ii2.8200
O2···H8vi2.5400H2B···F1i2.6100
O2···H1iii1.81 (2)H3A···O1vii2.7400
O2···H3A2.6300H3A···O22.6300
O3···H1Av2.04 (2)H3A···O3vii2.8100
O3···H2A2.5900H3A···C1vii2.9200
O3···H3Av2.8100H3A···H1A2.3900
O3···H102.7200H3B···H1A2.5400
O3···H3Bii2.8000H3B···O3ii2.8000
N1···F12.723 (2)H7···H10ix2.3900
N1···O3vii2.908 (2)H8···O2x2.5400
C1···O33.101 (3)H9···O1viii2.5800
C1···O2iii3.396 (2)H10···O32.7200
C2···F1i3.357 (2)H10···C42.9100
C3···O3vii3.262 (2)H10···H7xi2.3900
C4···O23.135 (2)
C1—O1—H1111.6 (16)C8—C9—C10120.3 (2)
C4—N1—C5124.00 (15)C5—C10—C9120.65 (19)
C4—N1—H1A116.6 (13)C1—C2—H2A109.00
C5—N1—H1A119.3 (13)C1—C2—H2B109.00
O1—C1—O2122.59 (18)C3—C2—H2A109.00
O1—C1—C2114.01 (17)C3—C2—H2B109.00
O2—C1—C2123.40 (18)H2A—C2—H2B108.00
C1—C2—C3114.31 (16)C2—C3—H3A109.00
C2—C3—C4113.08 (16)C2—C3—H3B109.00
N1—C4—C3115.05 (14)C4—C3—H3A109.00
O3—C4—C3122.21 (17)C4—C3—H3B109.00
O3—C4—N1122.74 (17)H3A—C3—H3B108.00
N1—C5—C6120.67 (17)C6—C7—H7120.00
N1—C5—C10121.94 (17)C8—C7—H7120.00
C6—C5—C10117.39 (17)C7—C8—H8120.00
C5—C6—C7122.39 (19)C9—C8—H8120.00
F1—C6—C5117.86 (17)C8—C9—H9120.00
F1—C6—C7119.76 (18)C10—C9—H9120.00
C6—C7—C8119.6 (2)C5—C10—H10120.00
C7—C8—C9119.6 (2)C9—C10—H10120.00
C5—N1—C4—O31.1 (3)N1—C5—C6—C7−179.78 (19)
C5—N1—C4—C3−179.64 (16)C10—C5—C6—F1179.37 (17)
C4—N1—C5—C6−129.3 (2)C10—C5—C6—C7−0.5 (3)
C4—N1—C5—C1051.4 (3)N1—C5—C10—C9−179.55 (19)
O1—C1—C2—C3170.92 (17)C6—C5—C10—C91.2 (3)
O2—C1—C2—C3−9.5 (3)F1—C6—C7—C8179.9 (2)
C1—C2—C3—C4−67.8 (2)C5—C6—C7—C8−0.3 (3)
C2—C3—C4—O3−9.2 (3)C6—C7—C8—C90.3 (4)
C2—C3—C4—N1171.57 (16)C7—C8—C9—C100.4 (4)
N1—C5—C6—F10.1 (3)C8—C9—C10—C5−1.1 (3)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z; (iv) −x, y+1/2, −z+1/2; (v) x−1, y, z; (vi) x, −y+1/2, z−1/2; (vii) x+1, y, z; (viii) −x, y−1/2, −z+1/2; (ix) x+1, −y+1/2, z+1/2; (x) x, −y+1/2, z+1/2; (xi) x−1, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O2iii0.86 (2)1.81 (2)2.664 (2)178 (2)
N1—H1A···O3vii0.88 (2)2.04 (2)2.908 (2)169.7 (18)
C8—H8···O2x0.932.543.435 (3)160
C9—H9···O1viii0.932.583.402 (3)147
C2—H2B···F1i0.972.613.357 (2)134
C2—H2A···F1ii0.972.823.602 (2)138

Symmetry codes: (iii) −x, −y+1, −z; (vii) x+1, y, z; (x) x, −y+1/2, z+1/2; (viii) −x, y−1/2, −z+1/2; (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2135).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Shah, F. A., Tahir, M. N., Ali, S. & Kashmiri, M. A. (2008). Acta Cryst. E64, o787. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography