PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1842.
Published online 2008 August 30. doi:  10.1107/S1600536808027335
PMCID: PMC2960697

3,5-Dimethyl-1-(2-pyridylcarbon­yl)-5-[(2-pyridylcarbon­yl)hydrazino]-2-pyrazoline methanol hemisolvate

Abstract

The title compound, C17H18N6O2·0.5CH3OH, exists in the double keto form and adopts a highly puckered geometry, stabilized by intra­molecular N—H(...)O and N—H(...)N hydrogen bonds. Inter­molecular N—H(...)N hydrogen bonds and π–π stacking inter­actions [centroid–centroid separation = 3.654 (1) Å] assemble the mol­ecules into chains running in the [111] direction. The methanol solvent mol­ecule is disordered over two sites related by inversion and forms a bifurcated O—H(...)(N,O) hydrogen bond.

Related literature

Two manganese metallocrowns with N-acyl-3-hydr­oxy-2-naphthalenecarbohydrazide ligands were synthesized by Dou et al. (2006 [triangle]). The 1-benzoyl-3,5-dimethyl-5-(1-benzoyl­hydrazido)pyrazoline ligand and two pyrazolone derivatives were synthesized by Liu et al. (2004 [triangle]) and Mukhopadhyay & Pal (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1842-scheme1.jpg

Experimental

Crystal data

  • C17H18N6O2·0.5CH4O
  • M r = 354.40
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1842-efi1.jpg
  • a = 9.0111 (12) Å
  • b = 10.6406 (17) Å
  • c = 10.814 (2) Å
  • α = 78.221 (1)°
  • β = 66.414 (1)°
  • γ = 86.477 (2)°
  • V = 930.0 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 (2) K
  • 0.53 × 0.48 × 0.46 mm

Data collection

  • Bruker SMART1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.955, T max = 0.960
  • 4781 measured reflections
  • 3189 independent reflections
  • 2189 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065
  • wR(F 2) = 0.216
  • S = 1.00
  • 3189 reflections
  • 245 parameters
  • H-atom parameters constrained
  • Δρmax = 0.84 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808027335/hb2780sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027335/hb2780Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the support of the National Natural Science Foundation of China (20671048).

supplementary crystallographic information

Comment

After assembling successfully two azametallacrowns based on N-acyl-3-hydroxy-2-naphthalenecarbohydrazide (Dou et al., 2006), and as an extension of our work on the structures of aroylhydrazine derivatives, the title compound, (I), was synthesized and characterized.

In compound (I), the C6—O1 and C12—O2 distances are 1.225 (3) Å, 1.227 (3)Å respectively, indicating that the molecule of (I) exists in the double keto form (Liu et al., 2004), and the distances of N(1)—N(2), C(3)—N(1) and C(1)—N(2) are 1.399 (3) Å, 1.492 (3)Å and 1.266 (3)Å (Table 1), which are in agreement with these of analogous compounds (Mukhopadhyay & Pal, 2004). The title molecule is chiral: in the arbitrarily chosen asymmetric unit, C3 has R configuration, but crystal symmetry generates a racemic mixture.

The three rings in (I), 2-picoloyl ring (A), pyrazoline ring (B) and 2-picoloylhydrazido ring (C), make dihedral angles of 65.5 (2)(A/B), 56.4 (1)(B/C) and 95.5 (1)° (A/C) respectively, showing the whole molecule exhibits highly puckered geometry.

There is intramolecular N4—H4···O1 hydrogen bond, which further stabilizes the molecular configuration (Fig. 1, Table 1), whereas double intermolecular N3—H3···N4 hydrogen bonds link molecules into centrosymmetric dimers. The dimers are assembled into chains along [111] through intermolecular π–π interactions between pyridine rings with a centrosymmetric-centrosymmetric distance of 3.654 (1)Å [Cg is a centroid of N6/C13—C17; symmetry code: (ii) -x, 1 - y, 1 - z] (Fig. 2).

Experimental

2-Picoloylhydrazine (0.548 g, 4 mmol) and ice acetic acid (0.48 g, 8 mmol) were added to a mixture of methanol/glycol (25 ml, 3:2), then 0.21 ml of acetylacetone (0.205 g, 2.05 mmol) was added and reacted for 3 h at 323–333 K. The solution was cooled to room temperature. After the solution was allowed to stand for three weeks, colourless blocks of (I) were obtained. When recrystallised from pure methanol, the same compound arises. Yield: 0.591 g, 81.5%. m.p.: 585–587 K. Anal. for C17.5H20N6O2.5: Calc. C, 59.25; H, 5.64; N, 23.70; Found: C, 59.21; H, 5.48; N, 23.38%.

Refinement

The methanol solvent molecule is disordered over two adjacent sites related by inversion.

All the H atoms were placed in idealized positions (C-H = 0.93-0.97Å, N-H = 0.88Å, O-H = 0.82Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

The highest difference peak is 0.80Å from C2.

Figures

Fig. 1.
The molecular structure of (I). Displacement ellipsoids for the non-hydrogen atoms are drawn at the 30% probability level.
Fig. 2.
Crystal packing of (I); symmetry code: (i) 1 - x, 1 - y, -z; (ii) -x, 1 - y, 1 - z.

Crystal data

C17H18N6O2·0.5CH4OZ = 2
Mr = 354.40F000 = 374
Triclinic, P1Dx = 1.266 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 9.0111 (12) ÅCell parameters from 1800 reflections
b = 10.6406 (17) Åθ = 2.5–24.8º
c = 10.814 (2) ŵ = 0.09 mm1
α = 78.221 (1)ºT = 298 (2) K
β = 66.414 (1)ºBlock, colourless
γ = 86.477 (2)º0.53 × 0.48 × 0.46 mm
V = 930.0 (2) Å3

Data collection

Bruker SMART1000 CCD diffractometer3189 independent reflections
Radiation source: fine-focus sealed tube2189 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
T = 298(2) Kθmax = 25.0º
ω scansθmin = 2.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.955, Tmax = 0.960k = −12→7
4781 measured reflectionsl = −12→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.216  w = 1/[σ2(Fo2) + (0.139P)2 + 0.2337P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3189 reflectionsΔρmax = 0.84 e Å3
245 parametersΔρmin = −0.20 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
N10.4874 (3)0.8072 (2)0.1320 (2)0.0433 (6)
N20.3319 (3)0.8492 (2)0.1473 (2)0.0466 (6)
N30.4382 (3)0.5456 (2)0.1581 (2)0.0433 (6)
H30.36880.51910.12980.052*
N40.5844 (3)0.6043 (2)0.0554 (2)0.0430 (6)
H40.65720.60460.09050.052*
N50.4085 (4)0.9947 (2)0.3280 (3)0.0636 (8)
N60.1726 (3)0.4050 (2)0.3258 (2)0.0508 (6)
O10.6856 (3)0.7836 (2)0.2105 (2)0.0618 (6)
O20.5370 (3)0.5115 (2)0.3232 (2)0.0665 (7)
O30.8469 (9)0.4142 (7)0.1517 (8)0.123 (2)0.50
H3A0.77090.43290.12840.185*0.50
C10.3048 (3)0.8290 (3)0.0467 (3)0.0457 (7)
C20.4392 (4)0.7663 (3)−0.0514 (3)0.0493 (7)
H2A0.48320.8217−0.14160.059*
H2B0.40260.6859−0.05990.059*
C30.5665 (3)0.7430 (2)0.0119 (3)0.0425 (6)
C40.1544 (4)0.8701 (4)0.0264 (4)0.0692 (9)
H4A0.08450.90900.10130.104*
H4B0.10010.79670.02320.104*
H4C0.18130.9311−0.05860.104*
C50.7302 (4)0.8002 (3)−0.0844 (3)0.0545 (8)
H5A0.72090.8906−0.11390.082*
H5B0.77180.7598−0.16310.082*
H5C0.80270.7866−0.03790.082*
C60.5483 (3)0.8179 (3)0.2250 (3)0.0441 (7)
C70.4413 (3)0.8700 (3)0.3491 (3)0.0461 (7)
C80.3925 (4)0.7926 (3)0.4769 (3)0.0554 (8)
H80.42030.70660.48740.066*
C90.3014 (5)0.8454 (4)0.5893 (3)0.0711 (10)
H90.26400.79510.67740.085*
C100.2671 (5)0.9717 (4)0.5696 (4)0.0780 (11)
H100.20661.00940.64440.094*
C110.3214 (5)1.0429 (4)0.4402 (4)0.0750 (10)
H110.29691.12950.42870.090*
C120.4278 (3)0.4976 (2)0.2862 (3)0.0423 (6)
C130.2742 (3)0.4273 (2)0.3813 (3)0.0407 (6)
C140.2423 (4)0.3888 (3)0.5204 (3)0.0510 (7)
H140.31640.40580.55520.061*
C150.0991 (4)0.3252 (3)0.6047 (3)0.0587 (8)
H150.07360.29880.69850.070*
C16−0.0062 (4)0.3010 (3)0.5495 (3)0.0639 (9)
H16−0.10350.25670.60480.077*
C170.0339 (4)0.3432 (3)0.4113 (3)0.0618 (8)
H17−0.03970.32780.37520.074*
C200.9726 (6)0.5000 (5)0.0745 (5)0.0401 (12)0.50
H20A1.06220.47790.10240.048*0.50
H20B0.93840.58540.09110.048*0.50
H20C1.00000.50000.00000.048*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0482 (13)0.0436 (13)0.0418 (12)0.0024 (10)−0.0199 (10)−0.0125 (10)
N20.0497 (14)0.0456 (13)0.0477 (13)0.0048 (10)−0.0211 (11)−0.0134 (10)
N30.0463 (13)0.0437 (13)0.0415 (12)−0.0045 (10)−0.0194 (10)−0.0062 (10)
N40.0471 (13)0.0415 (13)0.0398 (12)−0.0012 (10)−0.0173 (10)−0.0064 (9)
N50.090 (2)0.0486 (15)0.0555 (15)0.0058 (13)−0.0304 (15)−0.0154 (12)
N60.0494 (14)0.0605 (15)0.0429 (13)−0.0054 (11)−0.0184 (11)−0.0088 (11)
O10.0585 (14)0.0762 (15)0.0609 (13)0.0051 (11)−0.0320 (11)−0.0193 (11)
O20.0690 (14)0.0827 (16)0.0538 (12)−0.0232 (12)−0.0345 (11)0.0024 (11)
O30.113 (5)0.134 (6)0.111 (5)−0.005 (4)−0.041 (4)−0.007 (4)
C10.0533 (16)0.0413 (15)0.0450 (15)0.0001 (12)−0.0241 (13)−0.0042 (12)
C20.0630 (18)0.0496 (16)0.0419 (15)0.0019 (13)−0.0281 (14)−0.0079 (12)
C30.0530 (16)0.0407 (15)0.0357 (13)0.0007 (12)−0.0186 (12)−0.0094 (11)
C40.065 (2)0.077 (2)0.074 (2)0.0058 (17)−0.0385 (19)−0.0120 (18)
C50.0588 (18)0.0510 (17)0.0454 (16)−0.0047 (14)−0.0119 (14)−0.0077 (13)
C60.0533 (17)0.0404 (15)0.0443 (15)−0.0027 (12)−0.0254 (13)−0.0069 (12)
C70.0574 (17)0.0432 (16)0.0478 (16)−0.0011 (12)−0.0292 (14)−0.0125 (12)
C80.0680 (19)0.0529 (17)0.0497 (17)−0.0040 (14)−0.0277 (15)−0.0092 (14)
C90.084 (2)0.080 (3)0.0473 (18)−0.0121 (19)−0.0231 (18)−0.0111 (17)
C100.093 (3)0.084 (3)0.059 (2)0.007 (2)−0.024 (2)−0.036 (2)
C110.100 (3)0.061 (2)0.067 (2)0.0109 (19)−0.030 (2)−0.0286 (18)
C120.0486 (15)0.0418 (15)0.0406 (14)0.0003 (11)−0.0209 (13)−0.0101 (12)
C130.0461 (15)0.0403 (14)0.0384 (14)0.0033 (11)−0.0183 (12)−0.0108 (11)
C140.0580 (18)0.0562 (18)0.0411 (15)0.0010 (14)−0.0223 (14)−0.0089 (13)
C150.0604 (19)0.066 (2)0.0420 (16)−0.0015 (15)−0.0142 (15)−0.0052 (14)
C160.0520 (18)0.074 (2)0.0525 (18)−0.0037 (15)−0.0081 (15)−0.0099 (16)
C170.0517 (18)0.078 (2)0.0546 (18)−0.0080 (15)−0.0206 (16)−0.0092 (16)
C200.025 (2)0.060 (3)0.033 (2)0.003 (2)−0.015 (2)0.001 (2)

Geometric parameters (Å, °)

N1—C61.350 (3)C4—H4C0.9600
N1—N21.399 (3)C5—H5A0.9600
N1—C31.492 (3)C5—H5B0.9600
N2—C11.266 (3)C5—H5C0.9600
N3—C121.343 (3)C6—C71.497 (4)
N3—N41.417 (3)C7—C81.369 (4)
N3—H30.8800C8—C91.375 (5)
N4—C31.473 (3)C8—H80.9300
N4—H40.8802C9—C101.354 (5)
N5—C71.336 (4)C9—H90.9300
N5—C111.339 (4)C10—C111.355 (5)
N6—C171.333 (4)C10—H100.9300
N6—C131.334 (3)C11—H110.9300
O1—C61.225 (3)C12—C131.486 (4)
O2—C121.227 (3)C13—C141.388 (4)
O3—C201.368 (9)C14—C151.367 (4)
O3—H3A0.8200C14—H140.9300
C1—C21.483 (4)C15—C161.367 (5)
C1—C41.484 (4)C15—H150.9300
C2—C31.539 (4)C16—C171.371 (5)
C2—H2A0.9700C16—H160.9300
C2—H2B0.9700C17—H170.9300
C3—C51.501 (4)C20—H20A0.9700
C4—H4A0.9600C20—H20B0.9700
C4—H4B0.9600C20—H20C0.7426
C6—N1—N2121.2 (2)O1—C6—C7120.7 (2)
C6—N1—C3125.9 (2)N1—C6—C7118.0 (2)
N2—N1—C3112.7 (2)N5—C7—C8123.5 (3)
C1—N2—N1108.6 (2)N5—C7—C6116.5 (2)
C12—N3—N4120.4 (2)C8—C7—C6119.7 (3)
C12—N3—H3119.6C7—C8—C9118.2 (3)
N4—N3—H3117.0C7—C8—H8120.9
N3—N4—C3111.8 (2)C9—C8—H8120.9
N3—N4—H4110.0C10—C9—C8118.9 (3)
C3—N4—H4101.3C10—C9—H9120.5
C7—N5—C11116.4 (3)C8—C9—H9120.5
C17—N6—C13116.6 (2)C9—C10—C11119.5 (3)
C20—O3—H3A109.5C9—C10—H10120.2
N2—C1—C2114.1 (2)C11—C10—H10120.2
N2—C1—C4122.5 (3)N5—C11—C10123.4 (3)
C2—C1—C4123.3 (3)N5—C11—H11118.3
C1—C2—C3104.4 (2)C10—C11—H11118.3
C1—C2—H2A110.9O2—C12—N3122.5 (3)
C3—C2—H2A110.9O2—C12—C13122.0 (2)
C1—C2—H2B110.9N3—C12—C13115.5 (2)
C3—C2—H2B110.9N6—C13—C14123.4 (3)
H2A—C2—H2B108.9N6—C13—C12116.6 (2)
N4—C3—N1111.9 (2)C14—C13—C12120.1 (2)
N4—C3—C5108.3 (2)C15—C14—C13118.3 (3)
N1—C3—C5113.0 (2)C15—C14—H14120.9
N4—C3—C2110.5 (2)C13—C14—H14120.9
N1—C3—C299.8 (2)C14—C15—C16119.1 (3)
C5—C3—C2113.2 (2)C14—C15—H15120.4
C1—C4—H4A109.5C16—C15—H15120.4
C1—C4—H4B109.5C15—C16—C17119.0 (3)
H4A—C4—H4B109.5C15—C16—H16120.5
C1—C4—H4C109.5C17—C16—H16120.5
H4A—C4—H4C109.5N6—C17—C16123.6 (3)
H4B—C4—H4C109.5N6—C17—H17118.2
C3—C5—H5A109.5C16—C17—H17118.2
C3—C5—H5B109.5O3—C20—H20A109.4
H5A—C5—H5B109.5O3—C20—H20B109.4
C3—C5—H5C109.5H20A—C20—H20B108.0
H5A—C5—H5C109.5O3—C20—H20C111.3
H5B—C5—H5C109.5H20A—C20—H20C109.4
O1—C6—N1121.3 (3)H20B—C20—H20C109.4
C6—N1—N2—C1179.7 (2)O1—C6—C7—N5111.1 (3)
C3—N1—N2—C1−4.8 (3)N1—C6—C7—N5−70.4 (3)
C12—N3—N4—C3−113.3 (3)O1—C6—C7—C8−64.1 (4)
N1—N2—C1—C21.4 (3)N1—C6—C7—C8114.4 (3)
N1—N2—C1—C4−176.0 (3)N5—C7—C8—C91.7 (5)
N2—C1—C2—C32.2 (3)C6—C7—C8—C9176.6 (3)
C4—C1—C2—C3179.6 (3)C7—C8—C9—C10−1.6 (5)
N3—N4—C3—N148.5 (3)C8—C9—C10—C110.7 (6)
N3—N4—C3—C5173.7 (2)C7—N5—C11—C10−0.2 (6)
N3—N4—C3—C2−61.7 (3)C9—C10—C11—N50.2 (6)
C6—N1—C3—N464.0 (3)N4—N3—C12—O26.3 (4)
N2—N1—C3—N4−111.2 (2)N4—N3—C12—C13−174.3 (2)
C6—N1—C3—C5−58.5 (3)C17—N6—C13—C140.4 (4)
N2—N1—C3—C5126.3 (2)C17—N6—C13—C12−179.3 (3)
C6—N1—C3—C2−179.0 (2)O2—C12—C13—N6−172.3 (3)
N2—N1—C3—C25.7 (3)N3—C12—C13—N68.3 (4)
C1—C2—C3—N4113.4 (2)O2—C12—C13—C148.0 (4)
C1—C2—C3—N1−4.5 (3)N3—C12—C13—C14−171.4 (2)
C1—C2—C3—C5−124.8 (2)N6—C13—C14—C15−0.2 (4)
N2—N1—C6—O1−178.5 (2)C12—C13—C14—C15179.5 (3)
C3—N1—C6—O16.6 (4)C13—C14—C15—C160.5 (5)
N2—N1—C6—C73.0 (4)C14—C15—C16—C17−1.1 (5)
C3—N1—C6—C7−171.8 (2)C13—N6—C17—C16−1.0 (5)
C11—N5—C7—C8−0.8 (5)C15—C16—C17—N61.3 (5)
C11—N5—C7—C6−175.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3···N60.882.302.667 (3)105
N3—H3···N4i0.882.503.136 (3)130
N4—H4···O10.882.593.167 (3)124
N4—H4···O20.882.332.727 (3)108
O3—H3A···O20.822.562.932 (9)109
O3—H3A···N40.822.623.361 (9)151

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2780).

References

  • Dou, J. M., Liu, M. L., Li, D. C. & Wang, D. Q. (2006). Eur. J. Inorg. Chem.23, 4866–4871.
  • Liu, L., Jia, D. Z. & Yu, K. B. (2004). Chin. J. Struct. Chem.23, 112–118.
  • Mukhopadhyay, A. & Pal, S. (2004). Polyhedron, 23, 1997–2004.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography