PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1218–m1219.
Published online 2008 August 30. doi:  10.1107/S1600536808027074
PMCID: PMC2960695

Diaquabis(4-bromo­benzoato-κO)­bis(N,N′-diethyl­nicotinamide-κN 1)zinc(II)

Abstract

The title compound, [Zn(C7H4BrO2)2(C10H14N2O)2(H2O)2], is a monomeric complex with the ZnII atom lying on an inversion center. It contains two 4-bromo­benzoate, two diethyl­nicotinamide ligands and two water mol­ecules, all of which are monodentate. The four O atoms in the equatorial plane around the Zn atom form a slightly distorted square-planar arrangement, while the distorted octa­hedral geometry is completed by two N atoms in the axial positions. The methyl group of one of the ethyl groups is disordered over two positions, with occupancies of ca 0.65 and 0.35. The two aromatic rings are oriented at an angle of 77.22 (14)°. In the crystal structure, O—H(...)O hydrogen bonds link the mol­ecules into chains along the a axis.

Related literature

For general background, see: Antolini et al. (1982 [triangle]); Nadzhafov et al. (1981 [triangle]). For related literature, see: Clegg et al. (1986a [triangle],b [triangle]); Capilla & Aranda (1979 [triangle]); Usubaliev et al. (1992 [triangle]); Hökelek et al. (1995 [triangle], 1997 [triangle], 2007 [triangle]); Hökelek & Necefoğlu (1996 [triangle], 1997 [triangle]); Necefoğlu et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1218-scheme1.jpg

Experimental

Crystal data

  • [Zn(C7H4BrO2)2(C10H14N2O)2(H2O)2]
  • M r = 857.89
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1218-efi1.jpg
  • a = 7.3761 (14) Å
  • b = 8.677 (2) Å
  • c = 16.072 (3) Å
  • α = 84.32 (2)°
  • β = 78.917 (17)°
  • γ = 67.029 (18)°
  • V = 929.1 (4) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 2.87 mm−1
  • T = 294 (2) K
  • 0.40 × 0.25 × 0.15 mm

Data collection

  • Enraf–Nonius TurboCAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.467, T max = 0.650
  • 4005 measured reflections
  • 3746 independent reflections
  • 2570 reflections with I > 2σ(I)
  • R int = 0.057
  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.177
  • S = 1.06
  • 3746 reflections
  • 242 parameters
  • 16 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.87 e Å−3
  • Δρmin = −0.71 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808027074/ci2660sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027074/ci2660Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the purchase of a CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

supplementary crystallographic information

Comment

Transition metal complexes with biochemical molecules show interesting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982). The structure-function-coordination relationships of the arylcarboxylate ions in ZnII complexes of benzoic acid derivatives may be changed, depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of the synthesis (Nadzhafov et al., 1981).

The solid-state structures of anhydrous zinc(II) carboxylates include one-dimensional (Clegg et al., 1986a), two-dimensional (Clegg et al., 1986b) and three-dimensional (Capilla & Aranda, 1979) polymeric motifs of different types, while discrete monomeric complexes with octahedral or tetrahedral coordination geometry are found if water or other donor molecules are coordinated to Zn (Usubaliev et al., 1992).

N,N-Diethylnicotinamide (DENA) is an important respiratory stimulant. The structures of several complexes obtained by reacting divalent transition metal ions with DENA have been determined, including those of Cu2(DENA)2(C6H5COO)4 (Hökelek et al., 1995), [Zn2(DENA)2(C7H5O3)4].2H2O (Hökelek & Necefoğlu, 1996), [Co(DENA)2(C7H5O3)2(H2O)2] (Hökelek & Necefoğlu, 1997) and [Cu(DENA)2(C7H4NO4)2(H2O)2] (Hökelek et al., 1997).

The structure determination of the title compound, a zinc complex with two bromobenzoate (BB), two diethylnicotinamide (DENA) ligands and two water molecules, was undertaken in order to determine the properties of the BB and DENA ligands and also to compare the results obtained with those reported previously.

The title compound is a monomeric complex, with the Zn atom on a centre of symmetry. It contains two BB, two DENA ligands and two water molecules (Fig. 1). All ligands are monodentate. The four O atoms (O1, O4, and their symmetry-related atoms, O1', O4') in the equatorial plane around the Zn atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination geometry is completed by the two N atoms of the DENA ligands (N1, N1') in the axial positions (Table 1 and Fig. 1).

The near equality of the C1—O1 [1.257 (5) Å] and C1—O2 [1.246 (5) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds, as in other zinc(II) complexes: bis(4-hydroxybenzoato-κO)bis(nicotinamide-κN)zinc(II) (Necefoğlu et al., 2002) and diaquabis(N,N'-diethylnicotinamide-κN)bis(4-fluorobenzoato-κO)- zinc(II) (Hökelek et al., 2007). This may be due to the intramolecular O—H···O hydrogen bonding of the carboxylate O atoms (Table 2). The Zn atom is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by 0.885 (1) Å. The planar carboxylate group form dihedral angles of 3.09 (35)° and 80.21 (35)°, respectively, with the benzene (C2-C7) and pyridine (N1/C8-C12) rings. The dihedral angle between C2-C7 and N1/C8-C12 rings is 77.22 (14)°.

As can be seen from the packing diagram (Fig. 2), the molecules are linked into chains, along the a axis, by intermolecular O—H···O hydrogen bonds (Table 2).

Experimental

The title compound was prepared by the reaction of ZnNO3 (1.27 g, 10 mmol) in H2O (25 ml) and DENA (3.56 g, 20 mmol) in H2O (25 ml) with sodium p-bromobenzoate (4.46 g, 20 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving colourless single crystals.

Refinement

The H atoms of C14 atom and the C15 methyl group were disordered. During the refinement process the disordered atoms were refined over two positions with occupancies of 0.65 (3) (for C15, H15A, H15B, H15C, H14A and H14B) and 0.35 (3) (for C15A, H15D, H15E, H15F, H14C and H14D). H atoms of water molecule were located in a difference map and refined isotropically with the O-H and H···H distances restrained to 0.84 (1) and 1.37 (2) Å, respectively. The remaining H atoms were positioned geometrically [C-H = 0.93 (aromatic), 0.97 (methylene) and 0.96 Å (methyl)] and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines. Primed atoms are generated by the symmetry operator (1 -x, -y, 1 -z). ...
Fig. 2.
A partial packing diagram of the title compound, viewed down the b axis, showing hydrogen bonds (dashed lines) linking the molecules into chains. H atoms not involved in hydrogen bonding are omitted. The disordered atoms are omitted for clarity. Only ...

Crystal data

[Zn(C7H4BrO2)2(C10H14N2O)2(H2O)2]Z = 1
Mr = 857.89F000 = 436
Triclinic, P1Dx = 1.533 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.3761 (14) ÅCell parameters from 25 reflections
b = 8.677 (2) Åθ = 5.5–13.7º
c = 16.072 (3) ŵ = 2.87 mm1
α = 84.32 (2)ºT = 294 (2) K
β = 78.917 (17)ºBlock, colourless
γ = 67.029 (18)º0.40 × 0.25 × 0.15 mm
V = 929.1 (4) Å3

Data collection

Enraf–Nonius TurboCAD-4 diffractometerRint = 0.057
Radiation source: fine-focus sealed tubeθmax = 26.3º
Monochromator: graphiteθmin = 2.6º
T = 294(2) Kh = −8→9
non–profiled ω scansk = 0→10
Absorption correction: ψ scan(North et al., 1968)l = −19→20
Tmin = 0.467, Tmax = 0.6503 standard reflections
4005 measured reflections every 120 min
3746 independent reflections intensity decay: 1%
2570 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.177  w = 1/[σ2(Fo2) + (0.1119P)2] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3746 reflectionsΔρmax = 0.87 e Å3
242 parametersΔρmin = −0.71 e Å3
16 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Br11.23888 (10)0.16715 (11)0.03176 (4)0.0880 (3)
Zn10.50000.00000.50000.0356 (2)
O10.6060 (4)0.1244 (4)0.39536 (19)0.0414 (7)
O20.4176 (5)0.1310 (4)0.3013 (2)0.0524 (8)
O3−0.3317 (5)0.3246 (4)0.6209 (2)0.0541 (9)
O40.2761 (5)−0.0147 (4)0.4372 (2)0.0461 (8)
H410.305 (9)0.035 (5)0.3919 (18)0.08 (2)*
H420.302 (7)−0.114 (2)0.425 (3)0.044 (13)*
N10.2774 (5)0.2327 (4)0.5504 (2)0.0364 (8)
N2−0.3276 (7)0.4115 (6)0.7461 (3)0.0619 (12)
C10.5726 (6)0.1316 (5)0.3210 (3)0.0392 (10)
C20.7355 (6)0.1412 (5)0.2502 (3)0.0373 (9)
C30.9095 (7)0.1478 (6)0.2676 (3)0.0420 (10)
H30.92590.14550.32370.050*
C41.0587 (7)0.1578 (6)0.2035 (3)0.0483 (11)
H41.17390.16400.21570.058*
C51.0324 (7)0.1583 (6)0.1206 (3)0.0503 (12)
C60.8638 (8)0.1483 (7)0.1016 (3)0.0536 (12)
H60.84930.14780.04540.064*
C70.7161 (7)0.1390 (6)0.1666 (3)0.0446 (11)
H70.60200.13130.15400.054*
C80.3051 (6)0.3789 (5)0.5402 (3)0.0416 (10)
H80.42480.38040.50930.050*
C90.1628 (7)0.5253 (6)0.5737 (3)0.0465 (11)
H90.18700.62370.56590.056*
C10−0.0151 (7)0.5256 (6)0.6188 (3)0.0451 (11)
H10−0.11270.62400.64190.054*
C11−0.0477 (6)0.3765 (5)0.6296 (3)0.0376 (9)
C120.1022 (6)0.2355 (5)0.5923 (3)0.0371 (9)
H120.07900.13690.59670.045*
C13−0.2459 (7)0.3684 (6)0.6665 (3)0.0441 (11)
C14−0.2330 (11)0.4635 (9)0.8056 (4)0.0805 (18)
H14A−0.10400.46070.77610.097*0.65 (3)
H14B−0.31460.57880.82020.097*0.65 (3)
H14C−0.32910.54300.84560.097*0.35 (3)
H14D−0.13870.50900.77550.097*0.35 (3)
C15−0.203 (3)0.365 (3)0.8832 (11)0.109 (6)0.65 (3)
H15A−0.14070.40920.91670.164*0.65 (3)
H15B−0.11970.25110.87010.164*0.65 (3)
H15C−0.33020.37040.91450.164*0.65 (3)
C15A−0.128 (4)0.301 (2)0.837 (3)0.099 (10)0.35 (3)
H15D−0.04730.30790.87550.148*0.35 (3)
H15E−0.04320.23270.79010.148*0.35 (3)
H15F−0.22080.25340.86520.148*0.35 (3)
C16−0.5345 (9)0.4168 (8)0.7762 (5)0.0759 (18)
H16A−0.59680.48890.82460.091*
H16B−0.61380.46240.73150.091*
C17−0.5281 (12)0.2459 (9)0.8008 (5)0.103 (3)
H17A−0.45430.20290.84670.154*
H17B−0.46410.17430.75320.154*
H17C−0.66170.24980.81840.154*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0663 (5)0.1420 (7)0.0592 (4)−0.0549 (5)0.0153 (3)−0.0050 (4)
Zn10.0288 (4)0.0375 (4)0.0394 (4)−0.0128 (3)0.0004 (3)−0.0065 (3)
O10.0395 (17)0.0430 (17)0.0413 (18)−0.0169 (14)−0.0014 (13)−0.0052 (13)
O20.0335 (17)0.070 (2)0.055 (2)−0.0237 (16)−0.0073 (14)0.0055 (17)
O30.0423 (19)0.068 (2)0.062 (2)−0.0294 (17)−0.0069 (16)−0.0144 (17)
O40.0414 (18)0.048 (2)0.055 (2)−0.0232 (16)−0.0061 (15)−0.0058 (16)
N10.0312 (18)0.0340 (19)0.042 (2)−0.0118 (15)−0.0010 (14)−0.0038 (15)
N20.050 (3)0.082 (3)0.059 (3)−0.036 (2)0.008 (2)−0.016 (2)
C10.036 (2)0.030 (2)0.048 (3)−0.0112 (18)−0.0031 (19)−0.0024 (18)
C20.038 (2)0.033 (2)0.041 (2)−0.0152 (18)−0.0018 (18)−0.0043 (17)
C30.040 (2)0.047 (3)0.041 (2)−0.018 (2)−0.0066 (19)−0.0036 (19)
C40.039 (3)0.058 (3)0.051 (3)−0.024 (2)−0.003 (2)−0.001 (2)
C50.041 (3)0.057 (3)0.049 (3)−0.020 (2)0.005 (2)−0.005 (2)
C60.049 (3)0.073 (3)0.038 (3)−0.022 (3)−0.004 (2)−0.002 (2)
C70.037 (2)0.056 (3)0.043 (3)−0.020 (2)−0.0056 (19)−0.003 (2)
C80.033 (2)0.047 (3)0.048 (3)−0.020 (2)−0.0011 (19)−0.005 (2)
C90.047 (3)0.036 (2)0.058 (3)−0.018 (2)−0.004 (2)−0.008 (2)
C100.036 (2)0.038 (2)0.057 (3)−0.0086 (19)−0.004 (2)−0.014 (2)
C110.031 (2)0.041 (2)0.040 (2)−0.0115 (17)−0.0050 (17)−0.0080 (18)
C120.030 (2)0.038 (2)0.045 (2)−0.0152 (18)−0.0011 (17)−0.0041 (18)
C130.036 (2)0.043 (2)0.052 (3)−0.014 (2)−0.002 (2)−0.009 (2)
C140.080 (5)0.080 (4)0.075 (4)−0.028 (4)−0.003 (3)−0.006 (3)
C150.118 (9)0.139 (10)0.077 (8)−0.048 (7)−0.038 (7)0.006 (7)
C15A0.092 (12)0.089 (12)0.118 (14)−0.038 (9)−0.009 (9)−0.013 (8)
C160.059 (4)0.067 (4)0.094 (5)−0.025 (3)0.015 (3)−0.020 (3)
C170.116 (6)0.079 (5)0.102 (6)−0.047 (5)0.025 (5)0.001 (4)

Geometric parameters (Å, °)

Br1—C51.897 (5)C8—C91.372 (6)
Zn1—O1i2.097 (3)C8—H80.93
Zn1—O12.097 (3)C9—C101.371 (6)
Zn1—O4i2.143 (3)C9—H90.93
Zn1—O42.143 (3)C10—C111.394 (6)
Zn1—N1i2.157 (3)C10—H100.93
Zn1—N12.157 (3)C11—C121.383 (6)
O1—C11.257 (5)C11—C131.493 (6)
O2—C11.246 (5)C12—H120.93
O3—C131.226 (6)C14—C15A1.409 (16)
O4—H410.84 (4)C14—C151.441 (12)
O4—H420.84 (3)C14—H14A0.97
N1—C121.330 (5)C14—H14B0.97
N1—C81.352 (5)C14—H14C0.96
N2—C131.328 (6)C14—H14D0.96
N2—C141.481 (8)C15—H15A0.96
N2—C161.494 (7)C15—H15B0.96
C1—C21.510 (6)C15—H15C0.96
C2—C71.381 (6)C15A—H15D0.96
C2—C31.389 (6)C15A—H15E0.96
C3—C41.379 (6)C15A—H15F0.96
C3—H30.93C16—C171.481 (9)
C4—C51.382 (7)C16—H16A0.97
C4—H40.93C16—H16B0.97
C5—C61.373 (7)C17—H17A0.96
C6—C71.378 (6)C17—H17B0.96
C6—H60.93C17—H17C0.96
C7—H70.93
O1i—Zn1—O1180C9—C10—C11119.1 (4)
O1i—Zn1—O4i92.17 (12)C9—C10—H10120.4
O1—Zn1—O4i87.83 (12)C11—C10—H10120.4
O1i—Zn1—O487.83 (12)C12—C11—C10117.5 (4)
O1—Zn1—O492.17 (12)C12—C11—C13118.7 (4)
O4i—Zn1—O4180C10—C11—C13123.1 (4)
O1i—Zn1—N1i91.76 (12)N1—C12—C11123.9 (4)
O1—Zn1—N1i88.24 (12)N1—C12—H12118.0
O4i—Zn1—N1i86.71 (13)C11—C12—H12118.0
O4—Zn1—N1i93.29 (13)O3—C13—N2121.3 (4)
O1i—Zn1—N188.24 (12)O3—C13—C11118.3 (4)
O1—Zn1—N191.76 (12)N2—C13—C11120.3 (4)
O4i—Zn1—N193.29 (13)C15A—C14—N296.5 (14)
O4—Zn1—N186.71 (13)C15—C14—N2116.4 (8)
N1i—Zn1—N1180C15—C14—H14A108.2
C1—O1—Zn1126.3 (3)N2—C14—H14A108.2
Zn1—O4—H4196 (4)C15—C14—H14B108.2
Zn1—O4—H42111 (3)N2—C14—H14B108.2
H41—O4—H42107 (2)H14A—C14—H14B107.3
C12—N1—C8117.5 (3)C15A—C14—H14C117.8
C12—N1—Zn1119.3 (3)N2—C14—H14C112.5
C8—N1—Zn1123.1 (3)C15A—C14—H14D108.9
C13—N2—C14124.7 (5)N2—C14—H14D111.0
C13—N2—C16117.5 (5)H14C—C14—H14D109.6
C14—N2—C16117.7 (5)C14—C15—H15A109.5
O2—C1—O1125.5 (4)H14C—C15—H15A94.4
O2—C1—C2117.9 (4)C14—C15—H15B109.5
O1—C1—C2116.7 (4)H14C—C15—H15B145.2
C7—C2—C3118.7 (4)H15A—C15—H15B109.5
C7—C2—C1120.3 (4)C14—C15—H15C109.5
C3—C2—C1120.9 (4)H14C—C15—H15C84.6
C4—C3—C2121.4 (5)H15A—C15—H15C109.5
C4—C3—H3119.3H15B—C15—H15C109.5
C2—C3—H3119.3C14—C15A—H15D109.5
C3—C4—C5118.2 (5)C14—C15A—H15E109.5
C3—C4—H4120.9H15D—C15A—H15E109.5
C5—C4—H4120.9C14—C15A—H15F109.5
C6—C5—C4121.6 (4)H15D—C15A—H15F109.5
C6—C5—Br1119.7 (4)H15E—C15A—H15F109.5
C4—C5—Br1118.6 (4)C17—C16—N2110.0 (6)
C5—C6—C7119.3 (5)C17—C16—H16A109.7
C5—C6—H6120.3N2—C16—H16A109.7
C7—C6—H6120.3C17—C16—H16B109.7
C6—C7—C2120.7 (4)N2—C16—H16B109.7
C6—C7—H7119.6H16A—C16—H16B108.2
C2—C7—H7119.6C16—C17—H17A109.5
N1—C8—C9122.3 (4)C16—C17—H17B109.5
N1—C8—H8118.8H17A—C17—H17B109.5
C9—C8—H8118.8C16—C17—H17C109.5
C8—C9—C10119.6 (4)H17A—C17—H17C109.5
C8—C9—H9120.2H17B—C17—H17C109.5
C10—C9—H9120.2
O4i—Zn1—O1—C1163.0 (3)C3—C2—C7—C6−1.9 (7)
O4—Zn1—O1—C1−17.0 (3)C1—C2—C7—C6179.8 (4)
N1i—Zn1—O1—C176.3 (3)C12—N1—C8—C92.3 (7)
N1—Zn1—O1—C1−103.7 (3)Zn1—N1—C8—C9−179.1 (3)
O1i—Zn1—N1—C12−33.6 (3)N1—C8—C9—C10−0.5 (7)
O1—Zn1—N1—C12146.4 (3)C8—C9—C10—C110.0 (7)
O4i—Zn1—N1—C12−125.7 (3)C9—C10—C11—C12−1.2 (7)
O4—Zn1—N1—C1254.3 (3)C9—C10—C11—C13−170.8 (5)
O1i—Zn1—N1—C8147.8 (3)C8—N1—C12—C11−3.7 (6)
O1—Zn1—N1—C8−32.2 (3)Zn1—N1—C12—C11177.6 (3)
O4i—Zn1—N1—C855.7 (4)C10—C11—C12—N13.2 (7)
O4—Zn1—N1—C8−124.3 (4)C13—C11—C12—N1173.3 (4)
Zn1—O1—C1—O231.6 (6)C14—N2—C13—O3179.1 (5)
Zn1—O1—C1—C2−148.2 (3)C16—N2—C13—O3−4.4 (7)
O2—C1—C2—C7−3.8 (6)C14—N2—C13—C11−2.4 (8)
O1—C1—C2—C7176.0 (4)C16—N2—C13—C11174.1 (5)
O2—C1—C2—C3177.9 (4)C12—C11—C13—O3−54.7 (6)
O1—C1—C2—C3−2.3 (6)C10—C11—C13—O3114.9 (5)
C7—C2—C3—C42.2 (6)C12—C11—C13—N2126.8 (5)
C1—C2—C3—C4−179.5 (4)C10—C11—C13—N2−63.7 (7)
C2—C3—C4—C5−1.0 (7)C13—N2—C14—C15A−87.7 (16)
C3—C4—C5—C6−0.4 (8)C16—N2—C14—C15A95.7 (16)
C3—C4—C5—Br1−178.7 (4)C13—N2—C14—C15−121.7 (12)
C4—C5—C6—C70.6 (8)C16—N2—C14—C1561.7 (13)
Br1—C5—C6—C7178.9 (4)C13—N2—C16—C1781.6 (7)
C5—C6—C7—C20.6 (8)C14—N2—C16—C17−101.6 (7)

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H41···O20.84 (4)1.83 (5)2.658 (5)168 (3)
O4—H42···O3ii0.84 (3)1.95 (3)2.786 (6)169 (2)

Symmetry codes: (ii) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2660).

References

  • Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem.21, 1391–1395.
  • Capilla, A. V. & Aranda, R. A. (1979). Cryst. Struct. Commun.8, 795–798.
  • Clegg, W., Little, I. R. & Straughan, B. P. (1986a). Acta Cryst. C42, 919–920.
  • Clegg, W., Little, I. R. & Straughan, B. P. (1986b). Acta Cryst. C42, 1701–1703.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Hökelek, T., Budak, K. & Necefouglu, H. (1997). Acta Cryst. C53, 1049–1051.
  • Hökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561–m2562.
  • Hökelek, T. & Necefouglu, H. (1996). Acta Cryst C52, 1128–1131.
  • Hökelek, T. & Necefouglu, H. (1997). Acta Cryst. C53, 187–189.
  • Hökelek, T., Necefouglu, H. & Balcı, M. (1995). Acta Cryst C51, 2020–2023.
  • Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim.22, 124–128.
  • Necefoğlu, H., Hökelek, T., Ersanlı, C. C. & Erdönmez, A. (2002). Acta Cryst. E58, m758–m761.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Usubaliev, B. T., Guliev, F. I., Musaev, F. N., Ganbarov, D. M., Ashurova, S. A. & Movsumov, E. M. (1992). Zh. Strukt. Khim.33, 203–207.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography