PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1220.
Published online 2008 August 30. doi:  10.1107/S1600536808027281
PMCID: PMC2960687

catena-Poly[[[diaqua­copper(II)]-bis­[μ-1,1′-(butane-1,4-di­yl)diimidazole-κ2 N 3:N 3′]] dinitrate]

Abstract

In the title compound, {[Cu(C10H14N4)2(H2O)2](NO3)2}n, the CuII ion lies on an inversion center and is six-coordinated in an octa­hedral environment by four N atoms from four different 1,1′-butane-1,4-diyldiimidazole ligands and two O atoms from the two water mol­ecules. Bridging by the ligands results in a ribbon structure. Adjacent ribbons are linked to the nitrate anions via O—H(...)O hydrogen bonds, forming layers. One nitrate O atom is disordered equally over two positions.

Related literature

For background and the synthesis of 1,1′-butane-1,4-diyldiimidazole, see: Ma et al. (2003 [triangle]). For the crystal structure of a metal adduct, see: Che et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1220-scheme1.jpg

Experimental

Crystal data

  • [Cu(C10H14N4)2(H2O)2](NO3)2
  • M r = 604.10
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1220-efi7.jpg
  • a = 22.161 (11) Å
  • b = 10.334 (4) Å
  • c = 14.366 (7) Å
  • β = 126.375 (18)°
  • V = 2649 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.89 mm−1
  • T = 291 (2) K
  • 0.48 × 0.36 × 0.25 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.673, T max = 0.808
  • 12704 measured reflections
  • 3023 independent reflections
  • 2753 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.113
  • S = 1.07
  • 3023 reflections
  • 188 parameters
  • H-atom parameters constrained
  • Δρmax = 0.82 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808027281/ng2477sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027281/ng2477Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Jilin University for supporting this study.

supplementary crystallographic information

Comment

The 1,1'-butane-1,4-diyldiimidazole can be used as a flexible ligand to construct coordination polymeric compounds (Ma et al., 2003; Che et al., 2006). In this paper, we report the new title compound, (I), synthesized by the reaction of 1,1'-butane-1,4-diyldiimidazole ligands and copper dinitrate in methanol.

The CuII atom is located on an inversion centre and is hexacoordinated by four N atoms of four different 1,1'-butane-1,4-diyldiimidazole ligands and two O atoms of two water molecules (Fig. 1). Adjacent Cu(II) ions are linked by pairs of 1,1'-butane-1,4- diyldiimidazole molecules, resulting in a ribbon motif (Fig. 2).

In the crystal structure, uncoordinated nitrate anions link these ribbons into a layer structure via O—H···O hydrogen bonds (Table 1,Figure 3).

Experimental

1,1'-Butane-1,4-diyldiimidazole was prepared from imidazole and 1,4-dibromobutane in DMSO (Ma et al., 2003). 1,1'-(1,4-Butanediyl)diimidazole (0.380 g, 2 mmol) and copper dinitrate (0.188 g, 2 mmol) were dissolved in hot methanol solution (15 ml) to give a clear solution was obtained. The resulting solution was allowed to stand in a desiccator at room temperature for several days. Blue crystals of (I) were obtained.

Refinement

The O3 atom of the nitrate is refined with a split model over two positions, with occupancy of 0.5 for O3 and O3'. H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (Caromatic); C—H = 0.97 Å (methylene) and with Uiso(H) = 1.2Ueq(C). Water H atoms were initially located in a difference Fourier map, but they were treated as riding on their parent atoms with O—H = 0.85 Å and with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms. Dashed lines indicate the hydrogen-bonding interactions [Symmetry code: (I) -x + 1, y, -z + 3/2; (II) -x + 1/2, -y + 3/2, -z - 1;(III) x + 1/2, ...
Fig. 2.
A partial packing view, showing the ribbon chain structure.
Fig. 3.
A partial packing view, showing the two-dimensional network. Dashed lines indicate the hydrogen-bonding interactions and H atoms have been omitted.

Crystal data

[Cu(C10H14N4)2(H2O)2](NO3)2F000 = 1260
Mr = 604.10Dx = 1.515 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 11099 reflections
a = 22.161 (11) Åθ = 3.3–27.5º
b = 10.334 (4) ŵ = 0.89 mm1
c = 14.366 (7) ÅT = 291 (2) K
β = 126.375 (18)ºBlock, blue
V = 2649 (2) Å30.48 × 0.36 × 0.25 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer3023 independent reflections
Radiation source: fine-focus sealed tube2753 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.024
T = 291(2) Kθmax = 27.5º
ω scansθmin = 3.3º
Absorption correction: Multi-scan(ABSCOR; Higashi, 1995)h = −28→28
Tmin = 0.673, Tmax = 0.808k = −13→12
12704 measured reflectionsl = −18→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.113  w = 1/[σ2(Fo2) + (0.0644P)2 + 3.5066P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3023 reflectionsΔρmax = 0.82 e Å3
188 parametersΔρmin = −0.55 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.43494 (12)0.5667 (2)0.87357 (19)0.0360 (4)
H10.43870.48020.86000.043*
C20.40800 (13)0.6108 (2)0.9310 (2)0.0395 (5)
H20.39010.56110.96380.047*
C30.44106 (11)0.7749 (2)0.87476 (18)0.0321 (4)
H30.44950.85930.86270.038*
C40.38590 (14)0.8327 (3)0.9787 (2)0.0460 (6)
H4A0.40390.91900.98070.055*
H4B0.40690.80781.05760.055*
C50.30100 (14)0.8355 (3)0.9086 (2)0.0514 (7)
H5A0.28720.89260.94670.062*
H5B0.28360.74930.90840.062*
C60.26042 (14)0.8803 (3)0.7830 (2)0.0473 (6)
H6A0.21280.91860.75690.057*
H6B0.29020.94700.78040.057*
C70.24623 (12)0.7730 (2)0.70083 (18)0.0394 (5)
H7A0.29380.74050.72140.047*
H7B0.22050.70230.70820.047*
C80.22282 (12)0.9038 (3)0.5330 (2)0.0427 (5)
H80.26960.94270.56990.051*
C90.16308 (12)0.9201 (3)0.42203 (19)0.0402 (5)
H90.16190.97310.36870.048*
C100.12939 (11)0.7874 (2)0.49805 (18)0.0325 (4)
H100.10100.73150.50860.039*
Cu10.50000.66433 (3)0.75000.02769 (13)
N10.45588 (9)0.67011 (16)0.83845 (14)0.0293 (4)
N20.41221 (9)0.74259 (19)0.93120 (14)0.0328 (4)
N30.20075 (10)0.81828 (18)0.58036 (16)0.0342 (4)
N40.10424 (9)0.84658 (17)0.39970 (15)0.0317 (4)
N50.59796 (14)0.1501 (2)0.7259 (3)0.0516 (6)
O10.50000.9027 (3)0.75000.0740 (10)
H110.46280.95230.72540.111*
O20.5825 (2)0.0978 (4)0.6366 (3)0.1229 (13)
O30.5894 (5)0.2662 (7)0.7011 (8)0.089 (2)0.50
O40.61485 (19)0.0723 (3)0.8025 (3)0.0997 (10)
O50.50000.4120 (3)0.75000.0640 (8)
H120.46900.35730.74330.082 (13)*
O3'0.6140 (5)0.2592 (7)0.7753 (9)0.099 (3)0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0384 (11)0.0388 (11)0.0349 (10)0.0060 (9)0.0239 (9)0.0065 (9)
C20.0400 (11)0.0502 (13)0.0353 (11)0.0056 (10)0.0263 (10)0.0109 (10)
C30.0270 (9)0.0405 (11)0.0284 (9)−0.0014 (8)0.0162 (8)−0.0031 (8)
C40.0390 (12)0.0706 (17)0.0274 (11)0.0129 (11)0.0191 (10)−0.0063 (10)
C50.0388 (12)0.089 (2)0.0311 (12)0.0203 (12)0.0233 (11)0.0022 (11)
C60.0419 (12)0.0596 (14)0.0324 (11)0.0185 (11)0.0178 (10)0.0020 (11)
C70.0314 (10)0.0485 (13)0.0256 (10)0.0068 (9)0.0099 (9)0.0054 (9)
C80.0284 (10)0.0633 (15)0.0339 (11)−0.0104 (10)0.0170 (9)−0.0013 (10)
C90.0313 (10)0.0588 (14)0.0309 (10)−0.0083 (10)0.0187 (9)0.0017 (10)
C100.0263 (9)0.0397 (10)0.0281 (10)−0.0016 (8)0.0144 (8)0.0021 (8)
Cu10.02036 (18)0.0421 (2)0.02152 (19)0.0000.01289 (15)0.000
N10.0239 (8)0.0408 (9)0.0241 (8)0.0015 (6)0.0147 (7)−0.0004 (6)
N20.0254 (8)0.0509 (10)0.0216 (8)0.0055 (7)0.0135 (7)−0.0009 (7)
N30.0252 (8)0.0453 (10)0.0258 (9)0.0011 (7)0.0116 (7)0.0020 (7)
N40.0249 (8)0.0436 (9)0.0260 (8)−0.0019 (7)0.0147 (7)0.0002 (7)
N50.0477 (12)0.0460 (12)0.0739 (17)0.0010 (9)0.0430 (13)0.0065 (11)
O10.098 (2)0.0383 (14)0.134 (3)0.0000.095 (3)0.000
O20.162 (3)0.137 (3)0.090 (2)−0.032 (3)0.086 (3)−0.006 (2)
O30.112 (6)0.045 (3)0.150 (7)0.023 (4)0.098 (6)0.024 (5)
O40.109 (2)0.108 (2)0.0686 (16)−0.0290 (19)0.0449 (16)0.0012 (16)
O50.086 (2)0.0417 (14)0.097 (2)0.0000.072 (2)0.000
O3'0.085 (5)0.043 (3)0.158 (8)0.002 (3)0.066 (6)0.001 (5)

Geometric parameters (Å, °)

C1—C21.352 (3)C8—C91.349 (3)
C1—N11.374 (3)C8—N31.370 (3)
C1—H10.9300C8—H80.9300
C2—N21.365 (3)C9—N41.372 (3)
C2—H20.9300C9—H90.9300
C3—N11.325 (3)C10—N41.322 (3)
C3—N21.339 (3)C10—N31.335 (3)
C3—H30.9300C10—H100.9300
C4—N21.465 (3)Cu1—N12.0120 (18)
C4—C51.519 (4)Cu1—N1i2.0120 (18)
C4—H4A0.9700Cu1—N4ii2.020 (2)
C4—H4B0.9700Cu1—N4iii2.020 (2)
C5—C61.535 (3)Cu1—O12.463 (3)
C5—H5A0.9700Cu1—O52.608 (3)
C5—H5B0.9700N4—Cu1ii2.0203 (19)
C6—C71.510 (3)N5—O41.228 (4)
C6—H6A0.9700N5—O31.234 (7)
C6—H6B0.9700N5—O21.239 (4)
C7—N31.470 (3)O1—H110.8500
C7—H7A0.9700O5—H120.8500
C7—H7B0.9700
C2—C1—N1109.2 (2)C8—C9—H9125.1
C2—C1—H1125.4N4—C9—H9125.1
N1—C1—H1125.4N4—C10—N3111.30 (19)
C1—C2—N2106.46 (19)N4—C10—H10124.3
C1—C2—H2126.8N3—C10—H10124.3
N2—C2—H2126.8N1—Cu1—N1i176.60 (10)
N1—C3—N2110.72 (19)N1—Cu1—N4ii89.82 (8)
N1—C3—H3124.6N1i—Cu1—N4ii90.37 (8)
N2—C3—H3124.6N1—Cu1—N4iii90.37 (8)
N2—C4—C5112.4 (2)N1i—Cu1—N4iii89.82 (8)
N2—C4—H4A109.1N4ii—Cu1—N4iii173.60 (10)
C5—C4—H4A109.1N1—Cu1—O188.30 (5)
N2—C4—H4B109.1N1i—Cu1—O188.30 (5)
C5—C4—H4B109.1N4ii—Cu1—O193.20 (5)
H4A—C4—H4B107.8N4iii—Cu1—O193.20 (5)
C4—C5—C6114.7 (2)N1—Cu1—O591.70 (5)
C4—C5—H5A108.6N1i—Cu1—O591.70 (5)
C6—C5—H5A108.6N4ii—Cu1—O586.80 (5)
C4—C5—H5B108.6N4iii—Cu1—O586.80 (5)
C6—C5—H5B108.6O1—Cu1—O5180.000 (1)
H5A—C5—H5B107.6C3—N1—C1105.91 (18)
C7—C6—C5113.8 (2)C3—N1—Cu1126.85 (14)
C7—C6—H6A108.8C1—N1—Cu1127.24 (14)
C5—C6—H6A108.8C3—N2—C2107.66 (18)
C7—C6—H6B108.8C3—N2—C4126.1 (2)
C5—C6—H6B108.8C2—N2—C4126.2 (2)
H6A—C6—H6B107.7C10—N3—C8107.36 (18)
N3—C7—C6111.5 (2)C10—N3—C7126.27 (19)
N3—C7—H7A109.3C8—N3—C7126.33 (19)
C6—C7—H7A109.3C10—N4—C9105.44 (18)
N3—C7—H7B109.3C10—N4—Cu1ii127.10 (15)
C6—C7—H7B109.3C9—N4—Cu1ii127.43 (15)
H7A—C7—H7B108.0O4—N5—O3144.0 (5)
C9—C8—N3106.16 (19)O4—N5—O2113.1 (3)
C9—C8—H8126.9O3—N5—O2103.0 (5)
N3—C8—H8126.9Cu1—O1—H11127.1
C8—C9—N4109.7 (2)Cu1—O5—H12131.6

Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+1/2, −y+3/2, −z+1; (iii) x+1/2, −y+3/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H11···O4iv0.851.962.801 (4)170
O5—H12···O3i0.852.102.888 (8)153

Symmetry codes: (iv) −x+1, y+1, −z+3/2; (i) −x+1, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2477).

References

  • Che, G.-B., Liu, H., Liu, C.-B. & Liu, B. (2006). Acta Cryst. E62, m286–m288.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Ma, J.-F., Yang, J., Zheng, G.-L. & Liu, J.-F. (2003). Inorg. Chem.42, 7531–7534. [PubMed]
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography