PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1760.
Published online 2008 August 16. doi:  10.1107/S1600536808025749
PMCID: PMC2960684

2-Meth­oxy-4-methyl­phenyl 4-toluene­sulfonate

Abstract

In the title mol­ecule, C15H16O4S, the inter­planar angle between the two aromatic rings is 45.07 (7)°. The crystal packing is stabilized by weak inter­molecular C—H(...)O inter­actions.

Related literature

For related literature, see: Manivannan et al. (2005a [triangle]); Spungin et al. (1984 [triangle]); Yachi et al. (1989 [triangle]). Similar compounds have been reported by: Manivannan et al. (2005b [triangle]); Ramachandran et al.(2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1760-scheme1.jpg

Experimental

Crystal data

  • C15H16O4S
  • M r = 292.34
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1760-efi1.jpg
  • a = 7.932 (2) Å
  • b = 8.736 (3) Å
  • c = 10.934 (3) Å
  • α = 93.785 (5)°
  • β = 98.453 (5)°
  • γ = 102.476 (4)°
  • V = 727.9 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 293 (2) K
  • 0.48 × 0.46 × 0.14 mm

Data collection

  • Bruker Kappa APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.902, T max = 0.970
  • 8439 measured reflections
  • 3348 independent reflections
  • 2220 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.140
  • S = 1.02
  • 3348 reflections
  • 184 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808025749/bt2764sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025749/bt2764Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Several compounds containing the para-toluene sulfonate moiety are used in the fields of biology and industry. The merging of lipids can be monitored using a derivative of para-toluene sulfonate (Yachi et al., 1989). This method has been used in studying the membrane fusion during the acrosome reaction (Spungin et al., 1984).

The geometric parameters in the title compound agree with the reported values of similar structures (Manivannan et al., 2005a,b; Ramachandran et al., 2007). The aromatic rings make a dihedral angle of 45.07 (7)° with respect to each other. The crystal packing is stabilized by weak intermolecular C—H···O interactions.

The angle between the two oxygen atoms of the –SO2- group is much larger than the tetrahedral angle which leads to the decrease in the –O—S—Ar angle.

Experimental

A solution of vanillin in toluene was treated with amalgamated Zinc wool and concentrated HCl under reflux for thirty hours. The reaction mixture was cooled. The organic layer was separated and the aqueous layer was washed with ether. The combined ether and toluene solutions were washed with water, dried over anhydrous calcium chloride and the solvent removed under reduced pressure to get 2-methoxy-4-methyl phenol. A mixture of the above phenol and triethyl amine in acetone was treated with p-toluene sulfonyl chloride at room temperature for twelve hours. The residue was washed with triethyl amine solution and water and dried. Diffraction quality crystals were obtained from the solid by recrystallizing from ethanol.

Refinement

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3. The methyl groups were allowed to rotate but not to tip.

Figures

Fig. 1.
The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids for non-H atoms.
Fig. 2.
The packing of the title compound viewed down the a axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C15H16O4SZ = 2
Mr = 292.34F000 = 308
Triclinic, P1Dx = 1.334 Mg m3
a = 7.932 (2) ÅMo Kα radiation λ = 0.71073 Å
b = 8.736 (3) ÅCell parameters from 2654 reflections
c = 10.934 (3) Åθ = 1.9–24.7º
α = 93.785 (5)ºµ = 0.23 mm1
β = 98.453 (5)ºT = 293 (2) K
γ = 102.476 (4)ºBlock, colourless
V = 727.9 (4) Å30.48 × 0.46 × 0.14 mm

Data collection

Bruker KappaAPEX2 diffractometer3348 independent reflections
Radiation source: fine-focus sealed tube2220 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.028
T = 293(2) Kθmax = 28.0º
ω and [var phi] scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.902, Tmax = 0.970k = −11→11
8439 measured reflectionsl = −13→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.140  w = 1/[σ2(Fo2) + (0.0612P)2 + 0.2027P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3348 reflectionsΔρmax = 0.30 e Å3
184 parametersΔρmin = −0.20 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.14427 (8)0.00747 (7)0.26949 (6)0.0589 (2)
O30.02375 (19)−0.13695 (17)0.32049 (15)0.0545 (4)
C10.2907 (3)−0.0764 (2)0.1975 (2)0.0494 (5)
O40.0552 (2)−0.41635 (18)0.23259 (14)0.0597 (4)
C130.1215 (3)−0.3741 (2)0.3550 (2)0.0460 (5)
C120.2000 (3)−0.4645 (3)0.4347 (2)0.0538 (6)
H120.2116−0.56310.40440.065*
O10.0236 (3)0.0562 (2)0.17935 (19)0.0802 (6)
C80.1067 (3)−0.2266 (2)0.4028 (2)0.0475 (5)
O20.2394 (2)0.11439 (19)0.37184 (19)0.0777 (6)
C60.4487 (3)−0.0852 (3)0.2655 (2)0.0572 (6)
H60.4773−0.04760.34920.069*
C50.5639 (3)−0.1506 (3)0.2077 (2)0.0616 (6)
H50.6705−0.15670.25330.074*
C90.1631 (3)−0.1736 (3)0.5253 (2)0.0626 (7)
H90.1489−0.07620.55610.075*
C110.2616 (3)−0.4110 (3)0.5584 (2)0.0629 (7)
C20.2475 (3)−0.1326 (3)0.0737 (2)0.0637 (7)
H20.1408−0.12690.02800.076*
C40.5240 (3)−0.2066 (3)0.0845 (3)0.0608 (6)
C100.2412 (4)−0.2652 (4)0.6028 (2)0.0706 (7)
H100.2808−0.22870.68620.085*
C30.3654 (4)−0.1975 (3)0.0186 (3)0.0726 (8)
H30.3368−0.2358−0.06500.087*
C70.6524 (4)−0.2766 (4)0.0219 (3)0.0907 (10)
H7A0.6063−0.38780.00130.136*
H7B0.7620−0.25890.07730.136*
H7C0.6702−0.2274−0.05260.136*
C140.3479 (4)−0.5125 (4)0.6429 (3)0.0940 (10)
H14A0.4638−0.45530.67940.141*
H14B0.3544−0.60690.59550.141*
H14C0.2802−0.53970.70750.141*
C150.0926 (5)−0.5547 (4)0.1778 (3)0.0943 (10)
H15A0.2171−0.54220.18580.141*
H15B0.0416−0.57170.09130.141*
H15C0.0444−0.64350.21910.141*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0625 (4)0.0381 (3)0.0820 (5)0.0201 (3)0.0184 (3)0.0062 (3)
O30.0500 (9)0.0452 (8)0.0746 (11)0.0201 (7)0.0160 (8)0.0087 (7)
C10.0540 (13)0.0374 (11)0.0601 (14)0.0134 (10)0.0137 (11)0.0086 (10)
O40.0777 (11)0.0461 (9)0.0574 (10)0.0216 (8)0.0090 (8)0.0003 (7)
C130.0429 (11)0.0438 (11)0.0540 (13)0.0108 (9)0.0157 (10)0.0054 (10)
C120.0507 (13)0.0521 (13)0.0676 (16)0.0201 (11)0.0225 (12)0.0156 (11)
O10.0841 (13)0.0644 (11)0.1083 (15)0.0442 (10)0.0178 (11)0.0297 (11)
C80.0453 (12)0.0447 (11)0.0562 (14)0.0143 (9)0.0138 (10)0.0058 (10)
O20.0839 (13)0.0459 (9)0.1019 (14)0.0120 (9)0.0253 (11)−0.0149 (9)
C60.0562 (14)0.0547 (14)0.0599 (15)0.0118 (11)0.0095 (12)0.0019 (11)
C50.0524 (14)0.0618 (15)0.0749 (17)0.0186 (12)0.0144 (12)0.0111 (13)
C90.0694 (16)0.0578 (14)0.0625 (16)0.0150 (13)0.0202 (13)−0.0029 (12)
C110.0477 (13)0.0779 (18)0.0681 (17)0.0152 (12)0.0168 (12)0.0248 (14)
C20.0634 (15)0.0665 (16)0.0623 (16)0.0202 (13)0.0043 (12)0.0113 (13)
C40.0647 (16)0.0496 (13)0.0744 (17)0.0145 (12)0.0282 (13)0.0106 (12)
C100.0700 (17)0.0835 (19)0.0542 (15)0.0089 (15)0.0104 (13)0.0046 (14)
C30.090 (2)0.0742 (18)0.0568 (16)0.0194 (16)0.0220 (15)0.0027 (13)
C70.093 (2)0.080 (2)0.114 (3)0.0278 (18)0.056 (2)0.0064 (18)
C140.0724 (19)0.129 (3)0.092 (2)0.036 (2)0.0139 (17)0.052 (2)
C150.144 (3)0.0675 (18)0.075 (2)0.045 (2)0.0110 (19)−0.0157 (15)

Geometric parameters (Å, °)

S1—O21.4154 (19)C9—H90.9300
S1—O11.4219 (19)C11—C101.383 (4)
S1—O31.5954 (17)C11—C141.514 (4)
S1—C11.751 (2)C2—C31.382 (4)
O3—C81.414 (3)C2—H20.9300
C1—C21.376 (3)C4—C31.376 (4)
C1—C61.380 (3)C4—C71.516 (3)
O4—C131.360 (3)C10—H100.9300
O4—C151.421 (3)C3—H30.9300
C13—C121.383 (3)C7—H7A0.9600
C13—C81.393 (3)C7—H7B0.9600
C12—C111.382 (3)C7—H7C0.9600
C12—H120.9300C14—H14A0.9600
C8—C91.364 (3)C14—H14B0.9600
C6—C51.381 (3)C14—H14C0.9600
C6—H60.9300C15—H15A0.9600
C5—C41.369 (4)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C9—C101.376 (4)
O2—S1—O1120.05 (12)C10—C11—C14121.2 (3)
O2—S1—O3108.67 (11)C1—C2—C3118.8 (2)
O1—S1—O3102.79 (10)C1—C2—H2120.6
O2—S1—C1108.96 (11)C3—C2—H2120.6
O1—S1—C1110.55 (12)C5—C4—C3118.6 (2)
O3—S1—C1104.58 (9)C5—C4—C7120.7 (3)
C8—O3—S1117.90 (13)C3—C4—C7120.7 (3)
C2—C1—C6120.6 (2)C9—C10—C11120.9 (2)
C2—C1—S1119.77 (18)C9—C10—H10119.6
C6—C1—S1119.66 (18)C11—C10—H10119.6
C13—O4—C15116.8 (2)C4—C3—C2121.5 (2)
O4—C13—C12125.8 (2)C4—C3—H3119.2
O4—C13—C8116.1 (2)C2—C3—H3119.2
C12—C13—C8118.1 (2)C4—C7—H7A109.5
C11—C12—C13121.2 (2)C4—C7—H7B109.5
C11—C12—H12119.4H7A—C7—H7B109.5
C13—C12—H12119.4C4—C7—H7C109.5
C9—C8—C13121.4 (2)H7A—C7—H7C109.5
C9—C8—O3121.2 (2)H7B—C7—H7C109.5
C13—C8—O3117.30 (19)C11—C14—H14A109.5
C1—C6—C5119.3 (2)C11—C14—H14B109.5
C1—C6—H6120.4H14A—C14—H14B109.5
C5—C6—H6120.4C11—C14—H14C109.5
C4—C5—C6121.2 (2)H14A—C14—H14C109.5
C4—C5—H5119.4H14B—C14—H14C109.5
C6—C5—H5119.4O4—C15—H15A109.5
C8—C9—C10119.5 (2)O4—C15—H15B109.5
C8—C9—H9120.3H15A—C15—H15B109.5
C10—C9—H9120.3O4—C15—H15C109.5
C12—C11—C10118.9 (2)H15A—C15—H15C109.5
C12—C11—C14119.9 (3)H15B—C15—H15C109.5
O2—S1—O3—C8−59.07 (17)S1—O3—C8—C13−104.3 (2)
O1—S1—O3—C8172.70 (15)C2—C1—C6—C50.3 (4)
C1—S1—O3—C857.18 (17)S1—C1—C6—C5−179.55 (18)
O2—S1—C1—C2−154.40 (19)C1—C6—C5—C40.0 (4)
O1—S1—C1—C2−20.4 (2)C13—C8—C9—C102.0 (4)
O3—S1—C1—C289.5 (2)O3—C8—C9—C10179.2 (2)
O2—S1—C1—C625.4 (2)C13—C12—C11—C101.0 (4)
O1—S1—C1—C6159.38 (18)C13—C12—C11—C14−179.6 (2)
O3—S1—C1—C6−90.64 (19)C6—C1—C2—C3−0.2 (4)
C15—O4—C13—C12−9.7 (3)S1—C1—C2—C3179.6 (2)
C15—O4—C13—C8170.7 (2)C6—C5—C4—C3−0.4 (4)
O4—C13—C12—C11−179.3 (2)C6—C5—C4—C7179.4 (2)
C8—C13—C12—C110.3 (3)C8—C9—C10—C11−0.7 (4)
O4—C13—C8—C9177.8 (2)C12—C11—C10—C9−0.8 (4)
C12—C13—C8—C9−1.8 (3)C14—C11—C10—C9179.8 (2)
O4—C13—C8—O30.6 (3)C5—C4—C3—C20.4 (4)
C12—C13—C8—O3−179.08 (18)C7—C4—C3—C2−179.3 (3)
S1—O3—C8—C978.4 (2)C1—C2—C3—C4−0.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H15C···O1i0.962.603.327 (4)133

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2764).

References

  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Manivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005a). Acta Cryst. E61, o239–o241.
  • Manivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005b). Acta Cryst. E61, o242–o244.
  • Ramachandran, G., Kanakam, C. C., Manivannan, V., Thiruvenkatam, V. & Row, T. N. G. (2007). Acta Cryst. E63, o4638.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Spungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1984). Biochim. Biophys. Acta, 769, 531–542.
  • Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hananon, M. (1989). Biochim. Biophys. Acta, 978, 1–7. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography