PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1679.
Published online 2008 August 6. doi:  10.1107/S1600536808024409
PMCID: PMC2960683

1,5-Dimethyl-4-[(E)-3-phenoxy­benzyl­ideneamino]-2-phenyl-1H-pyrazol-3(2H)-one

Abstract

The title Schiff base, C24H21N3O2, adopts an E configuration with respect to the central C=N bond. The pyrazole ring and the central benzene ring attached to the imino group are almost coplanar. The phenyl ring attached to the pyrazole unit is twisted by 39.3 (2)° with respect to the pyrazole ring plane. The phen­oxy benzene ring makes a dihedral angle of 79.8 (2)° with the central benzene ring.

Related literature

For related crystal structures, see: Sun et al. (2007a [triangle],b [triangle],c [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1679-scheme1.jpg

Experimental

Crystal data

  • C24H21N3O2
  • M r = 383.44
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1679-efi1.jpg
  • a = 7.6640 (12) Å
  • b = 8.3593 (14) Å
  • c = 16.731 (3) Å
  • α = 77.396 (3)°
  • β = 77.587 (2)°
  • γ = 76.240 (3)°
  • V = 1000.9 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 273 (2) K
  • 0.18 × 0.16 × 0.12 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.985, T max = 0.990
  • 5300 measured reflections
  • 3505 independent reflections
  • 2584 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.117
  • S = 1.04
  • 3505 reflections
  • 264 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808024409/fj2143sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024409/fj2143Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Foundation of Taishan University.

supplementary crystallographic information

Comment

Antipyrine (2,3-dimethyl-1-phenylpyrazol-5-one) and its derivatives have been long known for their wide spectrum of biological activities. As part of our ongoing studies of antipyrine derivatives, the title compound, (I), has been prepared and its crystal structure is reported here (Fig. 1).

The molecule adopts an E configuration with respect to the central C=N double bond (Fig. 1).The pyrazole ring (N1/N2/C7—C9), the C13—C18 phenyl ring and the imino group are almost coplanar which allows conjugation. But the C1—C6 phenyl ring is twisted with respect to the central pyrazole ring plane by 39.3 (2)°. In addition, the mean planes of the C13—C18 and C19—C24 phenyl rings make a dihedral angle of 79.8 (2)°. Therefore the molecule is not planar. The bond distances and angles agree with the corresponding values found in similar compounds (Sun et al., 2007a,b,c).

Experimental

A mixture of 4-aminoantipyrine (1 mmol) and 3-phenoxybenzaldehyde (1 mmol) in anhydrous ethanol (20 ml) was refluxed for 3 hr, and then cooled to room temperature. After cooling, the solvent was removed under reduced pressure and the solid residue was recrystallized from ethanol to yield the pure product(66% yield). m.p. 425–427 K. A single-crystal suitable for an X-ray structural analysis was obtained by slowly evaporating a ethanolic solution at room temperature.

Refinement

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C). All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.

Crystal data

C24H21N3O2Z = 2
Mr = 383.44F000 = 404
Triclinic, P1Dx = 1.272 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.6640 (12) ÅCell parameters from 1817 reflections
b = 8.3593 (14) Åθ = 2–25.1º
c = 16.731 (3) ŵ = 0.08 mm1
α = 77.396 (3)ºT = 273 (2) K
β = 77.587 (2)ºBlock, colorless
γ = 76.240 (3)º0.18 × 0.16 × 0.12 mm
V = 1000.9 (3) Å3

Data collection

Bruker SMART CCD area-detector diffractometer3505 independent reflections
Radiation source: fine-focus sealed tube2584 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.016
T = 273(2) Kθmax = 25.1º
[var phi] and ω scansθmin = 2.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.985, Tmax = 0.990k = −9→8
5300 measured reflectionsl = −19→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.117  w = 1/[σ2(Fo2) + (0.0553P)2 + 0.1379P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3505 reflectionsΔρmax = 0.17 e Å3
264 parametersΔρmin = −0.18 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.09698 (15)0.55049 (16)1.14179 (8)0.0559 (3)
O2−0.41493 (16)1.0621 (2)0.79039 (8)0.0727 (4)
N10.17090 (17)0.46344 (17)1.19591 (8)0.0451 (4)
N20.34291 (17)0.50949 (17)1.17773 (9)0.0436 (3)
N30.15472 (18)0.75399 (18)1.00126 (8)0.0463 (4)
C10.1017 (2)0.3971 (2)1.27873 (10)0.0436 (4)
C20.1611 (2)0.4293 (2)1.34520 (11)0.0534 (5)
H20.24550.49781.33590.064*
C30.0942 (3)0.3590 (3)1.42535 (12)0.0644 (6)
H30.13480.37981.46990.077*
C4−0.0311 (3)0.2590 (3)1.43974 (13)0.0696 (6)
H4−0.07520.21181.49380.084*
C5−0.0915 (3)0.2288 (3)1.37361 (13)0.0641 (5)
H5−0.17780.16201.38330.077*
C6−0.0253 (2)0.2967 (2)1.29318 (11)0.0507 (4)
H6−0.06590.27491.24880.061*
C70.0644 (2)0.5536 (2)1.13636 (10)0.0430 (4)
C80.1860 (2)0.6450 (2)1.07513 (10)0.0412 (4)
C90.3485 (2)0.6120 (2)1.10112 (10)0.0431 (4)
C100.5167 (2)0.6735 (3)1.05804 (11)0.0573 (5)
H10A0.60700.58281.03860.086*
H10B0.56250.71751.09600.086*
H10C0.48940.76001.01170.086*
C110.4972 (2)0.3701 (2)1.19262 (13)0.0607 (5)
H11A0.50380.28891.15880.091*
H11B0.48010.31871.25020.091*
H11C0.60840.41161.17860.091*
C120.0019 (2)0.7838 (2)0.97743 (10)0.0477 (4)
H12−0.09060.73181.00990.057*
C13−0.0321 (2)0.8980 (2)0.90021 (10)0.0442 (4)
C140.1005 (2)0.9784 (2)0.84859 (11)0.0502 (4)
H140.21520.96070.86280.060*
C150.0622 (2)1.0844 (2)0.77623 (12)0.0548 (5)
H150.15191.13790.74200.066*
C16−0.1063 (2)1.1126 (2)0.75369 (11)0.0493 (4)
H16−0.13041.18320.70440.059*
C17−0.2385 (2)1.0347 (2)0.80524 (11)0.0474 (4)
C18−0.2022 (2)0.9280 (2)0.87751 (11)0.0492 (4)
H18−0.29270.87530.91150.059*
C19−0.4469 (2)1.1295 (2)0.71019 (11)0.0482 (4)
C20−0.3803 (3)1.0387 (3)0.64795 (13)0.0618 (5)
H20−0.30830.93240.65860.074*
C21−0.4186 (3)1.1025 (3)0.57065 (14)0.0781 (7)
H21−0.37191.04020.52830.094*
C22−0.5239 (3)1.2556 (4)0.55469 (15)0.0885 (8)
H22−0.54921.29850.50130.106*
C23−0.5939 (3)1.3483 (3)0.61630 (18)0.0836 (7)
H23−0.66731.45360.60490.100*
C24−0.5555 (3)1.2854 (2)0.69626 (14)0.0621 (5)
H24−0.60201.34720.73880.075*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0386 (7)0.0680 (9)0.0613 (8)−0.0141 (6)−0.0158 (6)−0.0009 (6)
O20.0417 (7)0.1136 (12)0.0539 (8)−0.0163 (7)−0.0152 (6)0.0112 (8)
N10.0369 (7)0.0496 (9)0.0479 (9)−0.0084 (6)−0.0113 (6)−0.0030 (7)
N20.0319 (7)0.0491 (8)0.0488 (8)−0.0050 (6)−0.0119 (6)−0.0051 (7)
N30.0424 (8)0.0543 (9)0.0427 (8)−0.0071 (7)−0.0114 (6)−0.0085 (7)
C10.0398 (9)0.0379 (9)0.0476 (10)0.0016 (7)−0.0093 (7)−0.0046 (7)
C20.0522 (10)0.0498 (11)0.0575 (12)−0.0003 (9)−0.0169 (9)−0.0114 (9)
C30.0641 (12)0.0728 (14)0.0502 (12)0.0075 (11)−0.0153 (10)−0.0160 (10)
C40.0636 (13)0.0783 (15)0.0484 (12)0.0006 (12)−0.0003 (10)0.0024 (10)
C50.0561 (11)0.0622 (13)0.0640 (14)−0.0119 (10)0.0010 (10)−0.0012 (10)
C60.0458 (10)0.0500 (11)0.0527 (11)−0.0052 (8)−0.0071 (8)−0.0078 (8)
C70.0376 (9)0.0453 (10)0.0469 (10)−0.0037 (7)−0.0125 (7)−0.0097 (8)
C80.0369 (8)0.0476 (10)0.0400 (9)−0.0061 (7)−0.0095 (7)−0.0092 (7)
C90.0386 (9)0.0492 (10)0.0419 (9)−0.0071 (7)−0.0074 (7)−0.0103 (8)
C100.0409 (10)0.0769 (14)0.0537 (11)−0.0155 (9)−0.0075 (8)−0.0070 (10)
C110.0441 (10)0.0598 (12)0.0742 (13)0.0031 (9)−0.0205 (9)−0.0080 (10)
C120.0426 (9)0.0555 (11)0.0445 (10)−0.0105 (8)−0.0102 (8)−0.0044 (8)
C130.0422 (9)0.0477 (10)0.0437 (10)−0.0073 (8)−0.0109 (7)−0.0089 (8)
C140.0398 (9)0.0562 (11)0.0568 (11)−0.0123 (8)−0.0131 (8)−0.0070 (9)
C150.0497 (10)0.0565 (12)0.0590 (12)−0.0211 (9)−0.0095 (9)−0.0004 (9)
C160.0508 (10)0.0451 (10)0.0497 (10)−0.0113 (8)−0.0128 (8)0.0020 (8)
C170.0378 (9)0.0568 (11)0.0470 (10)−0.0085 (8)−0.0112 (8)−0.0050 (8)
C180.0429 (9)0.0589 (11)0.0449 (10)−0.0142 (8)−0.0078 (8)−0.0024 (8)
C190.0363 (9)0.0573 (11)0.0488 (11)−0.0105 (8)−0.0137 (8)0.0028 (8)
C200.0598 (12)0.0541 (12)0.0644 (13)−0.0029 (9)−0.0083 (10)−0.0070 (10)
C210.0711 (14)0.1030 (19)0.0636 (15)−0.0168 (14)−0.0149 (12)−0.0192 (13)
C220.0640 (14)0.129 (2)0.0611 (15)−0.0159 (15)−0.0246 (12)0.0161 (15)
C230.0583 (13)0.0630 (14)0.108 (2)0.0043 (11)−0.0239 (13)0.0230 (14)
C240.0521 (11)0.0516 (12)0.0806 (15)−0.0063 (9)−0.0097 (10)−0.0134 (10)

Geometric parameters (Å, °)

O1—C71.2264 (19)C11—H11A0.9600
O2—C171.383 (2)C11—H11B0.9600
O2—C191.387 (2)C11—H11C0.9600
N1—C71.399 (2)C12—C131.462 (2)
N1—N21.4130 (18)C12—H120.9300
N1—C11.413 (2)C13—C181.386 (2)
N2—C91.376 (2)C13—C141.387 (2)
N2—C111.471 (2)C14—C151.378 (2)
N3—C121.269 (2)C14—H140.9300
N3—C81.395 (2)C15—C161.376 (2)
C1—C61.382 (2)C15—H150.9300
C1—C21.386 (2)C16—C171.374 (2)
C2—C31.382 (3)C16—H160.9300
C2—H20.9300C17—C181.375 (2)
C3—C41.369 (3)C18—H180.9300
C3—H30.9300C19—C201.362 (3)
C4—C51.379 (3)C19—C241.371 (3)
C4—H40.9300C20—C211.353 (3)
C5—C61.379 (3)C20—H200.9300
C5—H50.9300C21—C221.346 (4)
C6—H60.9300C21—H210.9300
C7—C81.445 (2)C22—C231.366 (4)
C8—C91.354 (2)C22—H220.9300
C9—C101.483 (2)C23—C241.393 (3)
C10—H10A0.9600C23—H230.9300
C10—H10B0.9600C24—H240.9300
C10—H10C0.9600
C17—O2—C19118.13 (13)H11A—C11—H11B109.5
C7—N1—N2110.26 (13)N2—C11—H11C109.5
C7—N1—C1125.01 (13)H11A—C11—H11C109.5
N2—N1—C1119.24 (13)H11B—C11—H11C109.5
C9—N2—N1105.45 (12)N3—C12—C13121.58 (17)
C9—N2—C11119.28 (14)N3—C12—H12119.2
N1—N2—C11114.71 (14)C13—C12—H12119.2
C12—N3—C8121.20 (15)C18—C13—C14118.58 (16)
C6—C1—C2119.78 (17)C18—C13—C12119.30 (16)
C6—C1—N1119.10 (15)C14—C13—C12122.11 (15)
C2—C1—N1121.11 (16)C15—C14—C13120.02 (16)
C3—C2—C1119.65 (19)C15—C14—H14120.0
C3—C2—H2120.2C13—C14—H14120.0
C1—C2—H2120.2C16—C15—C14121.13 (17)
C4—C3—C2120.64 (19)C16—C15—H15119.4
C4—C3—H3119.7C14—C15—H15119.4
C2—C3—H3119.7C17—C16—C15118.93 (17)
C3—C4—C5119.6 (2)C17—C16—H16120.5
C3—C4—H4120.2C15—C16—H16120.5
C5—C4—H4120.2C16—C17—C18120.61 (16)
C6—C5—C4120.6 (2)C16—C17—O2123.25 (16)
C6—C5—H5119.7C18—C17—O2116.10 (16)
C4—C5—H5119.7C17—C18—C13120.72 (17)
C5—C6—C1119.70 (18)C17—C18—H18119.6
C5—C6—H6120.1C13—C18—H18119.6
C1—C6—H6120.1C20—C19—C24120.94 (18)
O1—C7—N1123.73 (16)C20—C19—O2120.53 (17)
O1—C7—C8131.93 (16)C24—C19—O2118.42 (17)
N1—C7—C8104.32 (14)C21—C20—C19120.2 (2)
C9—C8—N3121.71 (15)C21—C20—H20119.9
C9—C8—C7108.38 (15)C19—C20—H20119.9
N3—C8—C7129.89 (14)C22—C21—C20120.4 (2)
C8—C9—N2111.07 (15)C22—C21—H21119.8
C8—C9—C10128.06 (16)C20—C21—H21119.8
N2—C9—C10120.86 (14)C21—C22—C23120.5 (2)
C9—C10—H10A109.5C21—C22—H22119.8
C9—C10—H10B109.5C23—C22—H22119.8
H10A—C10—H10B109.5C22—C23—C24120.1 (2)
C9—C10—H10C109.5C22—C23—H23120.0
H10A—C10—H10C109.5C24—C23—H23120.0
H10B—C10—H10C109.5C19—C24—C23117.9 (2)
N2—C11—H11A109.5C19—C24—H24121.1
N2—C11—H11B109.5C23—C24—H24121.1

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2143).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, Y.-F., Li, J.-K., Zheng, Z.-B. & Wu, R.-T. (2007a). Acta Cryst. E63, o2522–o2523.
  • Sun, Y.-F., Sun, X.-Z., Zhang, D.-D. & Zheng, Z.-B. (2007b). Acta Cryst. E63, o2178–o2179.
  • Sun, Y.-F., Zhang, D.-D. & Song, H.-C. (2007c). Chin. J. Struct. Chem.26, 511–514.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography