PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1108–m1109.
Published online 2008 August 6. doi:  10.1107/S1600536808024215
PMCID: PMC2960677

Hexakis(1H-imidazole-κN 3)nickel(II) triaqua­tris(1H-imidazole-κN 3)nickel(II) bis­(naphthalene-1,4-dicarboxyl­ate)

Abstract

The crystal structure of the title compound, [Ni(C3H4N2)6][Ni(C3H4N2)3(H2O)3](C12H6O4)2, contains uncoordinated naphthalene­dicarboxyl­ate dianions and two kinds of NiII complex cations, both assuming distorted octa­hedral geometries. One NiII ion is located on an inversion center and is coordinated by six imidazole mol­ecules, while the other NiII ion is located on a twofold rotation axis and is coordinated by three water mol­ecules and three imidazole mol­ecules in a mer-NiN3O3 arrangement. The naphthalene­dicarboxyl­ate dianion links both NiII complex cations via O—H(...)O and N—H(...)O hydrogen bonding, but no π–π stacking is observed between aromatic rings in the crystal structure. One imidazole ligand is equally disordered over two sites about a twofold rotation axis; one N atom and one water O atom have site symmetry 2.

Related literature

For general background, see: Su & Xu (2004 [triangle]); Xu et al. (2007 [triangle]). For related structures, see: Derissen et al. (1979 [triangle]); Li et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1108-scheme1.jpg

Experimental

Crystal data

  • [Ni(C3H4N2)6][Ni(C3H4N2)3(H2O)3](C12H6O4)2
  • M r = 1212.54
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1108-efi5.jpg
  • a = 29.301 (7) Å
  • b = 9.297 (2) Å
  • c = 20.381 (5) Å
  • V = 5552 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.75 mm−1
  • T = 294 (2) K
  • 0.22 × 0.15 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.866, T max = 0.925
  • 33285 measured reflections
  • 4984 independent reflections
  • 2653 reflections with I > 2σ(I)
  • R int = 0.128

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.140
  • S = 1.01
  • 4984 reflections
  • 367 parameters
  • 5 restraints
  • H-atom parameters constrained
  • Δρmax = 0.95 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808024215/hb2767sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024215/hb2767Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by the ZIJIN project of Zhejiang University, China.

supplementary crystallographic information

Comment

As part of our ongoing investigation on the nature of π-π stacking (Su & Xu, 2004; Xu et al., 2007), the title compound, (I), incorporating naphthalenedicarboxylate dianions, has recently been prepared in the laboratory and its crystal structure is reported here.

The crystal structure contains uncoordinated naphthalenedicarboxylate dianions and two independent NiII complex cations (Fig. 1). Both NiII complexes assume distorted octahedral geometry. The Ni1 atom is located in an inversion center and coordinated by six imidazole ligands, while the Ni2 atom is located on a twofold axis and coordinated by three water and three imidazole ligands. In the Ni2-containing complex cation, the O2W and N9 atoms are also located on the twofold axis, but the other atoms of the disordered N9-imidazole ring do not lie on the twofold axis and the N9-imidazole ring is tilted to the twofold axis by an angle of 11.9 (5)°, similar to 14.2 (3)° found in the MnII analogue (Li et al., 2008). The coordination bond distances (Table 1) are significantly shorter than those found in the MnII analogue (Li et al., 2008).

The uncoordinated naphthalenedicarboxylate dianion links with both NiII complex cations via O—H···O and N—H···O hydrogen bonding (Fig. 1 and Table 2). Two carboxyl groups are twisted with respect to the naphthalene ring system by dihedral angles of 56.4 (5)° and 50.4 (5)°, which are larger than those found in the structure of free naphthalenedicarboxylic acid (ca 40°; Derissen et al., 1979). No π-π stacking is observed between aromatic rings in the crystal structure.

Experimental

A water-ethanol solution (16 ml, 1:3 v/v) of naphthalene-1,4-dicarboxyllic acid (0.108 g, 0.5 mmol) and sodium carbonate (0.053 g, 0.5 mmol) was refluxed for 0.5 h, then nickel chloride hexahydrate (0.118 g, 0.5 mmol) was added to the above solution. The reaction mixture was refluxed for a further 6.5 h, then imidazole (0.102 g, 1.5 mmol) was added to the above solution and the reaction mixture was refluxed for another 0.5 h. After cooling to room temperature the solution was filtered. Green prisms of (I) were obtained from the filtrate after 4 d.

Refinement

The N9-containing imidazole molecule is disordered over two sites, close to a twofold rotation axis, but N9 atom is located on the twofold axis and is not disordered. The disordered components were refined with a half site occupancy and bond-length restraints were used to stabilise the refinement.

The water H atoms were located in a difference Fourier map and refined as riding in as-found relative positions with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 Å and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N). The highest peak in the final difference Fourier map is 0.10 Å from N9.

Figures

Fig. 1.
The molecular structure of (I) with 30% probability displacement (arbitrary spheres for H atoms). One of the disordered imidazole components has been omitted for clarify. Dashed lines indicate hydrogen bonding [symmetry codes: (i) -x + 3/2, -y + 3/2, ...

Crystal data

[Ni(C3H4N2)6][Ni(C3H4N2)3(H2O)3](C12H6O4)2F000 = 2520
Mr = 1212.54Dx = 1.451 Mg m3
Orthorhombic, PccnMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 5668 reflections
a = 29.301 (7) Åθ = 2.2–24.5º
b = 9.297 (2) ŵ = 0.75 mm1
c = 20.381 (5) ÅT = 294 (2) K
V = 5552 (2) Å3Prism, green
Z = 40.22 × 0.15 × 0.10 mm

Data collection

Rigaku R-AXIS RAPID IP diffractometer4984 independent reflections
Radiation source: fine-focus sealed tube2653 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.128
Detector resolution: 10.0 pixels mm-1θmax = 25.2º
T = 294(2) Kθmin = 1.4º
ω scansh = −34→34
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)k = −9→11
Tmin = 0.866, Tmax = 0.925l = −24→23
33285 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.140  w = 1/[σ2(Fo2) + (0.0559P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4984 reflectionsΔρmax = 0.95 e Å3
367 parametersΔρmin = −0.47 e Å3
5 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ni10.50000.00000.50000.0358 (2)
Ni20.75000.75000.54570 (4)0.0380 (2)
N10.53093 (12)0.2040 (4)0.50465 (18)0.0392 (9)
N20.58307 (14)0.3703 (4)0.4922 (2)0.0586 (12)
H2N0.60580.41670.47590.070*
N30.54557 (13)−0.0704 (4)0.57414 (17)0.0417 (10)
N40.58361 (13)−0.2193 (4)0.63876 (19)0.0505 (11)
H4N0.5921−0.29800.65730.061*
N50.45162 (13)0.0630 (4)0.57239 (18)0.0399 (9)
N60.41513 (15)0.0694 (4)0.6666 (2)0.0570 (12)
H6N0.40910.05760.70750.068*
N70.72172 (12)0.9585 (4)0.54389 (19)0.0449 (10)
N80.69577 (14)1.1727 (4)0.5723 (2)0.0612 (12)
H8N0.68781.24410.59660.073*
O10.65246 (12)0.5137 (4)0.43190 (15)0.0622 (10)
O20.69666 (14)0.6205 (4)0.36079 (17)0.0887 (14)
O30.65981 (12)0.0720 (3)0.13293 (16)0.0598 (10)
O40.60816 (11)−0.0274 (3)0.19982 (15)0.0556 (9)
O1W0.68332 (10)0.6562 (3)0.54323 (13)0.0447 (8)
H1A0.67410.62170.50280.067*
H1B0.67800.59350.57240.067*
O2W0.75000.75000.44632 (18)0.0498 (12)
H2A0.73420.69890.42070.075*
C10.56657 (18)0.2458 (6)0.4712 (2)0.0546 (14)
H10.57900.19390.43650.066*
C20.5574 (2)0.4100 (6)0.5438 (3)0.0690 (17)
H20.56100.49130.56980.083*
C30.52539 (18)0.3080 (5)0.5499 (3)0.0598 (15)
H30.50230.30890.58120.072*
C40.54989 (17)−0.2028 (5)0.5955 (2)0.0494 (13)
H40.5312−0.27800.58180.059*
C50.60167 (18)−0.0877 (6)0.6475 (3)0.0652 (16)
H50.6256−0.06370.67550.078*
C60.57841 (17)0.0030 (5)0.6078 (2)0.0547 (14)
H60.58400.10110.60400.066*
C70.45366 (17)0.0319 (5)0.6357 (2)0.0501 (13)
H70.4786−0.01060.65610.060*
C80.38765 (19)0.1290 (6)0.6211 (3)0.0700 (17)
H80.35870.16670.62820.084*
C90.40963 (19)0.1237 (6)0.5646 (3)0.0635 (15)
H90.39800.15680.52480.076*
C100.71259 (18)1.0466 (5)0.5928 (3)0.0603 (15)
H100.71731.02360.63670.072*
C110.6937 (2)1.1662 (6)0.5064 (3)0.0779 (18)
H110.68321.23780.47830.093*
C120.7098 (2)1.0357 (6)0.4888 (3)0.0743 (18)
H120.71241.00280.44590.089*
C200.65761 (16)0.4155 (5)0.3246 (2)0.0409 (12)
C210.69215 (17)0.3443 (5)0.2948 (2)0.0571 (14)
H210.72210.36750.30570.069*
C220.68420 (16)0.2359 (5)0.2477 (2)0.0541 (14)
H220.70900.19110.22780.065*
C230.64133 (15)0.1953 (5)0.2307 (2)0.0395 (11)
C240.60336 (14)0.2706 (5)0.25953 (19)0.0360 (11)
C250.55749 (15)0.2431 (5)0.2410 (2)0.0443 (12)
H250.55140.17090.21070.053*
C260.52247 (17)0.3195 (5)0.2666 (2)0.0511 (13)
H260.49270.29740.25440.061*
C270.53041 (17)0.4317 (5)0.3111 (2)0.0525 (14)
H270.50610.48490.32760.063*
C280.57430 (17)0.4625 (5)0.3302 (2)0.0493 (13)
H280.57940.53660.35990.059*
C290.61186 (15)0.3837 (4)0.3056 (2)0.0376 (11)
C300.66958 (17)0.5248 (5)0.3766 (2)0.0478 (13)
C310.63586 (17)0.0716 (5)0.1832 (2)0.0447 (12)
N90.75000.75000.6462 (3)0.0595 (12)
N100.7702 (3)0.7153 (9)0.7485 (3)0.0595 (12)0.50
H10A0.78720.71280.78290.071*0.50
C130.7844 (2)0.7501 (13)0.6881 (3)0.0595 (12)0.50
H130.81440.77150.67710.071*0.50
C140.7248 (3)0.6846 (11)0.7474 (4)0.0595 (12)0.50
H140.70620.65500.78180.071*0.50
C150.7135 (2)0.7078 (13)0.6836 (4)0.0595 (12)0.50
H150.68410.69630.66710.071*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0416 (5)0.0306 (5)0.0353 (4)0.0021 (4)0.0028 (4)0.0023 (4)
Ni20.0463 (5)0.0360 (5)0.0316 (5)−0.0068 (4)0.0000.000
N10.042 (2)0.033 (2)0.043 (2)−0.0010 (18)−0.002 (2)0.0025 (19)
N20.065 (3)0.048 (3)0.063 (3)−0.020 (2)0.006 (2)0.006 (2)
N30.052 (3)0.031 (2)0.042 (2)0.001 (2)0.001 (2)0.0034 (19)
N40.053 (3)0.046 (3)0.052 (3)0.010 (2)−0.007 (2)0.012 (2)
N50.045 (3)0.033 (2)0.041 (2)−0.0024 (19)0.0020 (19)0.0027 (18)
N60.063 (3)0.064 (3)0.044 (3)−0.002 (2)0.016 (2)−0.004 (2)
N70.048 (2)0.040 (2)0.046 (3)−0.0051 (19)−0.002 (2)0.001 (2)
N80.062 (3)0.039 (3)0.082 (4)0.001 (2)0.006 (3)−0.002 (3)
O10.084 (3)0.066 (3)0.0359 (19)−0.031 (2)0.0086 (19)−0.0142 (18)
O20.118 (3)0.101 (3)0.047 (2)−0.069 (3)0.004 (2)−0.013 (2)
O30.084 (3)0.052 (2)0.043 (2)−0.0058 (19)0.022 (2)−0.0143 (17)
O40.070 (2)0.045 (2)0.052 (2)−0.0141 (18)0.0050 (18)−0.0095 (17)
O1W0.053 (2)0.047 (2)0.0348 (18)−0.0090 (15)0.0016 (15)0.0027 (15)
O2W0.068 (3)0.054 (3)0.028 (2)−0.027 (2)0.0000.000
C10.069 (4)0.046 (3)0.048 (3)−0.013 (3)0.009 (3)−0.010 (3)
C20.083 (4)0.043 (3)0.081 (5)−0.013 (3)0.004 (4)−0.018 (3)
C30.059 (4)0.041 (3)0.080 (4)0.000 (3)0.015 (3)−0.011 (3)
C40.053 (3)0.043 (3)0.053 (3)0.003 (2)−0.007 (3)0.007 (3)
C50.069 (4)0.051 (4)0.076 (4)0.004 (3)−0.032 (3)0.001 (3)
C60.060 (3)0.032 (3)0.073 (4)−0.003 (3)−0.019 (3)0.004 (3)
C70.054 (3)0.057 (3)0.039 (3)0.001 (3)0.004 (3)−0.007 (3)
C80.059 (4)0.084 (5)0.067 (4)0.028 (3)0.022 (3)−0.003 (3)
C90.062 (4)0.070 (4)0.058 (4)0.018 (3)0.003 (3)0.010 (3)
C100.085 (4)0.039 (3)0.057 (4)0.000 (3)0.005 (3)0.007 (3)
C110.093 (5)0.064 (4)0.077 (5)0.026 (3)−0.008 (4)0.013 (4)
C120.106 (5)0.057 (4)0.060 (4)0.029 (3)−0.012 (3)0.007 (3)
C200.049 (3)0.038 (3)0.037 (3)−0.007 (2)0.000 (2)−0.007 (2)
C210.043 (3)0.070 (4)0.058 (3)−0.015 (3)−0.003 (3)−0.023 (3)
C220.041 (3)0.062 (4)0.059 (3)−0.002 (3)0.008 (3)−0.018 (3)
C230.040 (3)0.046 (3)0.033 (3)−0.005 (2)0.001 (2)−0.007 (2)
C240.038 (3)0.041 (3)0.029 (2)−0.001 (2)−0.001 (2)−0.001 (2)
C250.044 (3)0.048 (3)0.041 (3)−0.003 (3)−0.007 (2)−0.004 (2)
C260.042 (3)0.060 (3)0.052 (3)−0.001 (3)−0.004 (3)0.003 (3)
C270.048 (3)0.050 (3)0.059 (4)0.019 (3)−0.003 (3)−0.003 (3)
C280.057 (3)0.048 (3)0.043 (3)0.004 (3)0.001 (3)−0.002 (2)
C290.043 (3)0.034 (3)0.036 (3)0.001 (2)−0.002 (2)0.000 (2)
C300.056 (3)0.048 (3)0.040 (3)−0.013 (3)0.000 (3)−0.008 (2)
C310.057 (3)0.037 (3)0.040 (3)0.001 (3)−0.011 (3)−0.010 (2)
N90.078 (3)0.062 (3)0.039 (2)0.005 (3)0.0000.000
N100.078 (3)0.062 (3)0.039 (2)0.005 (3)0.0000.000
C130.078 (3)0.062 (3)0.039 (2)0.005 (3)0.0000.000
C140.078 (3)0.062 (3)0.039 (2)0.005 (3)0.0000.000
C150.078 (3)0.062 (3)0.039 (2)0.005 (3)0.0000.000

Geometric parameters (Å, °)

Ni1—N12.104 (3)C4—H40.9300
Ni1—N1i2.104 (3)C5—C61.353 (6)
Ni1—N32.120 (4)C5—H50.9300
Ni1—N3i2.120 (4)C6—H60.9300
Ni1—N52.128 (4)C7—H70.9300
Ni1—N5i2.128 (4)C8—C91.321 (6)
Ni2—O1Wii2.140 (3)C8—H80.9300
Ni2—O1W2.140 (3)C9—H90.9300
Ni2—O2W2.025 (4)C10—H100.9300
Ni2—N7ii2.108 (4)C11—C121.349 (7)
Ni2—N72.108 (4)C11—H110.9300
Ni2—N9ii2.048 (5)C12—H120.9300
Ni2—N92.048 (5)C20—C211.353 (6)
N1—C11.306 (5)C20—C291.426 (6)
N1—C31.346 (6)C20—C301.510 (6)
N2—C11.325 (6)C21—C221.411 (6)
N2—C21.345 (6)C21—H210.9300
N2—H2N0.8600C22—C231.357 (6)
N3—C41.312 (5)C22—H220.9300
N3—C61.365 (5)C23—C241.440 (6)
N4—C41.333 (5)C23—C311.511 (6)
N4—C51.344 (6)C24—C251.419 (6)
N4—H4N0.8600C24—C291.432 (5)
N5—C71.323 (5)C25—C261.352 (6)
N5—C91.363 (6)C25—H250.9300
N6—C71.339 (5)C26—C271.402 (6)
N6—C81.347 (6)C26—H260.9300
N6—H6N0.8600C27—C281.374 (6)
N7—C101.317 (6)C27—H270.9300
N7—C121.377 (6)C28—C291.414 (6)
N8—C101.338 (6)C28—H280.9300
N8—C111.347 (6)N9—N9ii0.000 (10)
N8—H8N0.8600N9—C131.3201 (11)
O1—C301.238 (5)N9—C13ii1.3201 (11)
O2—C301.235 (5)N9—C15ii1.3703 (11)
O3—C311.243 (5)N9—C151.3703 (11)
O4—C311.272 (5)N10—C131.3399 (11)
O1W—H1A0.9247N10—C141.3603 (11)
O1W—H1B0.8470N10—H10A0.8600
O2W—H2A0.8443C13—H130.9300
C1—H10.9300C14—C151.3599 (11)
C2—C31.338 (7)C14—C14ii1.912 (16)
C2—H20.9300C14—H140.9300
C3—H30.9300C15—H150.9300
N1—Ni1—N1i180.0C5—C6—H6124.9
N1—Ni1—N388.56 (14)N3—C6—H6124.9
N1i—Ni1—N391.44 (14)N5—C7—N6111.3 (4)
N1—Ni1—N3i91.44 (14)N5—C7—H7124.3
N1i—Ni1—N3i88.56 (14)N6—C7—H7124.3
N3—Ni1—N3i180.0C9—C8—N6107.1 (5)
N1—Ni1—N590.44 (14)C9—C8—H8126.5
N1i—Ni1—N589.56 (14)N6—C8—H8126.5
N3—Ni1—N590.59 (14)C8—C9—N5110.7 (5)
N3i—Ni1—N589.41 (14)C8—C9—H9124.7
N1—Ni1—N5i89.56 (14)N5—C9—H9124.7
N1i—Ni1—N5i90.44 (14)N7—C10—N8112.6 (5)
N3—Ni1—N5i89.41 (14)N7—C10—H10123.7
N3i—Ni1—N5i90.59 (14)N8—C10—H10123.7
N5—Ni1—N5i180.0N8—C11—C12106.8 (5)
O2W—Ni2—N9180.0N8—C11—H11126.6
O2W—Ni2—N7ii89.00 (11)C12—C11—H11126.6
N9ii—Ni2—N7ii91.00 (11)C11—C12—N7109.9 (5)
O2W—Ni2—N789.00 (11)C11—C12—H12125.0
N9—Ni2—N791.00 (11)N7—C12—H12125.0
N7ii—Ni2—N7178.0 (2)C21—C20—C29118.7 (4)
O2W—Ni2—O1Wii88.65 (8)C21—C20—C30118.1 (4)
N9—Ni2—O1Wii91.35 (8)C29—C20—C30123.2 (4)
N7ii—Ni2—O1Wii90.87 (12)C20—C21—C22122.1 (4)
N7—Ni2—O1Wii89.08 (12)C20—C21—H21119.0
O2W—Ni2—O1W88.65 (8)C22—C21—H21119.0
N9—Ni2—O1W91.35 (8)C23—C22—C21121.7 (4)
N7ii—Ni2—O1W89.08 (12)C23—C22—H22119.2
N7—Ni2—O1W90.87 (12)C21—C22—H22119.2
O1Wii—Ni2—O1W177.31 (15)C22—C23—C24118.4 (4)
C1—N1—C3103.9 (4)C22—C23—C31118.3 (4)
C1—N1—Ni1126.1 (3)C24—C23—C31123.3 (4)
C3—N1—Ni1128.8 (3)C25—C24—C29118.1 (4)
C1—N2—C2106.7 (4)C25—C24—C23122.4 (4)
C1—N2—H2N126.7C29—C24—C23119.4 (4)
C2—N2—H2N126.7C26—C25—C24121.5 (4)
C4—N3—C6103.5 (4)C26—C25—H25119.3
C4—N3—Ni1126.0 (3)C24—C25—H25119.3
C6—N3—Ni1130.4 (3)C25—C26—C27120.9 (5)
C4—N4—C5106.0 (4)C25—C26—H26119.5
C4—N4—H4N127.0C27—C26—H26119.5
C5—N4—H4N127.0C28—C27—C26119.6 (5)
C7—N5—C9104.2 (4)C28—C27—H27120.2
C7—N5—Ni1125.8 (3)C26—C27—H27120.2
C9—N5—Ni1129.3 (3)C27—C28—C29121.4 (4)
C7—N6—C8106.7 (4)C27—C28—H28119.3
C7—N6—H6N126.6C29—C28—H28119.3
C8—N6—H6N126.6C28—C29—C20121.9 (4)
C10—N7—C12103.9 (4)C28—C29—C24118.5 (4)
C10—N7—Ni2129.7 (3)C20—C29—C24119.5 (4)
C12—N7—Ni2126.4 (3)O2—C30—O1123.9 (4)
C10—N8—C11106.7 (5)O2—C30—C20116.8 (4)
C10—N8—H8N126.6O1—C30—C20119.3 (4)
C11—N8—H8N126.6O3—C31—O4125.6 (4)
Ni2—O1W—H1A115.3O3—C31—C23117.7 (4)
Ni2—O1W—H1B115.5O4—C31—C23116.6 (4)
H1A—O1W—H1B109.4C13—N9—C15103.6 (6)
Ni2—O2W—H2A128.2C13—N9—Ni2130.3 (4)
N1—C1—N2112.6 (4)C15—N9—Ni2123.8 (4)
N1—C1—H1123.7C13—N10—C14109.8 (8)
N2—C1—H1123.7C13—N10—H10A125.1
C3—C2—N2105.7 (5)C14—N10—H10A125.1
C3—C2—H2127.2N9—C13—N10111.0 (7)
N2—C2—H2127.2N9—C13—H13124.5
C2—C3—N1111.2 (5)N10—C13—H13124.5
C2—C3—H3124.4C15—C14—N10102.8 (8)
N1—C3—H3124.4C15—C14—C14ii95.0 (5)
N3—C4—N4113.5 (4)C15—C14—H14128.6
N3—C4—H4123.2N10—C14—H14128.6
N4—C4—H4123.2C14ii—C14—H14129.9
N4—C5—C6106.8 (5)C14—C15—N9112.8 (7)
N4—C5—H5126.6C14—C15—H15123.6
C6—C5—H5126.6N9—C15—H15123.6
C5—C6—N3110.1 (4)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+3/2, −y+3/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1A···O10.921.872.779 (4)167
O1W—H1B···O3iii0.852.042.884 (4)172
O2W—H2A···O20.841.802.633 (5)170
N2—H2N···O10.861.872.724 (5)174
N4—H4N···O4iv0.861.902.759 (5)177
N6—H6N···O4i0.861.982.834 (5)177
N8—H8N···O3v0.862.042.876 (5)165
N10—H10A···O2vi0.861.872.638 (8)149

Symmetry codes: (iii) x, −y+1/2, z+1/2; (iv) x, −y−1/2, z+1/2; (i) −x+1, −y, −z+1; (v) x, −y+3/2, z+1/2; (vi) −x+3/2, y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2767).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Derissen, J. L., Timmermans, C. & Schoone, J. C. (1979). Cryst. Struct. Commun.8, 533–536.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Li, J.-H., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, m729. [PMC free article] [PubMed]
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem.57, 223–229.
  • Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622–m624. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography