PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1121.
Published online 2008 August 6. doi:  10.1107/S1600536808024197
PMCID: PMC2960673

catena-Poly[[μ-bromido-(μ-hydroxydi-2-pyridylmethano­lato-κ4 N,O:O,N′)dicopper(II)(CuCu)]-di-μ-bromido]

Abstract

The title complex, [Cu2Br3(C11H9N2O2)]n, was one of three isolated by slow evaporation of an acetonitrile reaction mixture of CuBr2 with di-2-pyridyl ketone (1:1 molar ratio). The title complex contains a 2:1 metal-to-ligand ratio of copper(II) with the hydrated form of the ligand, di-2-pyridylmethane­diol. The two copper centers are bridged by a bromide ion and the alk­oxy O atom, and the Cu—Cu distance is 2.9801 (5) Å. The dimeric units are further linked by bromide ions, leading to a two-dimensional extended bridged structure. O—H(...)O hydrogen bonds are present in the crystal structure.

Related literature

Apart from the title complex, two others were isolated from the reaction mixture and structurally characterized. One was identical to that of Parker et al. (2000 [triangle]), the other is reported in the following paper by Westcott et al. (2008 [triangle]). For other related structures, see: Wang et al. (1986 [triangle]); Mariezcurrena et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1121-scheme1.jpg

Experimental

Crystal data

  • [Cu2Br3(C11H9N2O2)]
  • M r = 568.01
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1121-efi1.jpg
  • a = 8.7708 (7) Å
  • b = 9.6018 (8) Å
  • c = 10.1839 (8) Å
  • α = 73.7060 (10)°
  • β = 70.8520 (10)°
  • γ = 63.9280 (10)°
  • V = 718.28 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 11.30 mm−1
  • T = 100 (2) K
  • 0.39 × 0.19 × 0.08 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS in SAINT-Plus; Bruker, 2003 [triangle]) T min = 0.122, T max = 0.424
  • 7397 measured reflections
  • 3537 independent reflections
  • 3305 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.061
  • S = 1.09
  • 3537 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 1.02 e Å−3
  • Δρmin = −0.60 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT-Plus (Bruker, 2003 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808024197/fj2131sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024197/fj2131Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Guy Crundwell (CCSU) for helpful discussions. BLW acknowledges funding from the National Science Foundation (NSF # 0420322). MZ and ADH acknowledge funding from the National Science Foundation (NSF #0087210) and the Ohio Board of Regents (CAP-491).

supplementary crystallographic information

Comment

The structure of the title compound, is shown below. The complex was one of three Cu-dpkoh complexes isolated from the 1:1 molar mixture of copper(II)bromide and di-2-pyridyl ketone. The title complex was the second isolated from solution. One other complex had been reported previously by Parker, et al., another unique complex is described elsewhere: Westcott, et al.(2008).

The complex contains two copper centers that are 2.9801 (5) Å apart and are bridged by the hydrated form of the ligand di-2-pyridylketone. Each copper center is also coordinated to the ligand through one unique nitrogen atom and a by a µ-hydroxyl bridge. Additionally, each Cu center coordinates one bromide ion. The bromide ion then acts as a bridging ligand to the next di-copper unit, leading to a polymeric structure as shown in Figure 2.

Experimental

Di-2-pyridyl ketone (dpk) was purchased from Aldrich and used as received. Copper(II) bromide hexahydrate was dried in an oven at 110 C for 48 h before use. DPK (1 mmol) and copper(II) bromide (1 mmol) were combined in 40 ml of acetonitirle and stirred for 30 minutes. The resulting green crystals were isolated after 4 days by slow evaporation of the solution.

Refinement

For structure solution, direct methods were used to locate the initial structural model that consisted of all non-hydrogen atoms. All ligand-based H atoms were added during the refinement stage at idealized positions (C—H 0.95 Å; O—H 0.84 Å). All H atoms were refined with isotropic displacement parameter set equal to 1.5 times the isotropic equivalent value for the attached atom. All non-hydrogen atoms were refined anisotropically.

Figures

Fig. 1.
ORTEP-3 (Farrugia, 1997) representation of the asymmetric unit. Ellipsoids are drawn at the 30% probability level.
Fig. 2.
Packing diagram showing the extended structure.

Crystal data

[Cu2Br3(C11H9N2O2)]Z = 2
Mr = 568.01F000 = 536
Triclinic, P1Dx = 2.626 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.7708 (7) ÅCell parameters from 6753 reflections
b = 9.6018 (8) Åθ = 2.4–30.6º
c = 10.1839 (8) ŵ = 11.30 mm1
α = 73.7060 (10)ºT = 100 (2) K
β = 70.8520 (10)ºHexagon, green
γ = 63.9280 (10)º0.39 × 0.19 × 0.08 mm
V = 718.28 (10) Å3

Data collection

Bruker SMART APEX CCD diffractometer3537 independent reflections
Radiation source: fine-focus sealed tube3305 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.021
T = 100(2) Kθmax = 28.3º
ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS in SAINT-Plus; Bruker, 2003)h = −11→11
Tmin = 0.122, Tmax = 0.424k = −12→12
7397 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.061  w = 1/[σ2(Fo2) + (0.0301P)2 + 0.561P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
3537 reflectionsΔρmax = 1.02 e Å3
182 parametersΔρmin = −0.60 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br20.12154 (3)1.22298 (3)0.70734 (3)0.01693 (7)
Br3−0.23030 (3)1.19011 (3)1.00202 (3)0.01823 (7)
Br10.57965 (3)0.99477 (3)0.65263 (3)0.01507 (7)
Cu10.32811 (4)0.96542 (3)0.64120 (3)0.01335 (8)
Cu2−0.03366 (4)1.04405 (4)0.82256 (3)0.01406 (8)
O20.1101 (2)0.9459 (2)0.65750 (18)0.0130 (3)
O10.1005 (2)0.7855 (2)0.53023 (19)0.0181 (4)
H10.00270.85130.51680.027*
N10.4203 (3)0.7340 (2)0.6562 (2)0.0142 (4)
C60.1192 (3)0.7966 (3)0.6588 (3)0.0136 (5)
N2−0.1178 (3)0.8719 (3)0.8672 (2)0.0148 (4)
C7−0.0283 (3)0.7649 (3)0.7798 (3)0.0146 (5)
C50.3027 (3)0.6743 (3)0.6683 (2)0.0132 (5)
C40.3512 (3)0.5141 (3)0.6783 (3)0.0165 (5)
H40.26700.47260.68800.020*
C30.5248 (3)0.4151 (3)0.6739 (3)0.0181 (5)
H30.56030.30510.68010.022*
C11−0.2540 (3)0.8573 (3)0.9709 (3)0.0194 (5)
H11−0.31820.93451.03100.023*
C10.5880 (3)0.6375 (3)0.6519 (3)0.0181 (5)
H1A0.67020.68120.64260.022*
C10−0.3034 (4)0.7321 (4)0.9924 (3)0.0231 (6)
H10−0.39980.72321.06670.028*
C9−0.2103 (4)0.6209 (3)0.9042 (3)0.0250 (6)
H9−0.24000.53280.91870.030*
C20.6449 (3)0.4767 (3)0.6606 (3)0.0185 (5)
H20.76410.41060.65750.022*
C8−0.0737 (4)0.6390 (3)0.7948 (3)0.0213 (5)
H8−0.01160.56610.73050.026*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br20.01628 (12)0.01244 (12)0.02349 (13)−0.00619 (10)−0.00358 (10)−0.00520 (10)
Br30.01571 (12)0.01965 (14)0.01898 (13)−0.00469 (10)−0.00213 (9)−0.00841 (10)
Br10.01576 (12)0.01633 (13)0.01651 (12)−0.00878 (10)−0.00493 (9)−0.00191 (9)
Cu10.01234 (14)0.01089 (15)0.01833 (16)−0.00526 (12)−0.00342 (11)−0.00347 (12)
Cu20.01375 (15)0.01408 (15)0.01601 (15)−0.00656 (12)−0.00140 (11)−0.00535 (12)
O20.0129 (8)0.0090 (8)0.0178 (8)−0.0051 (6)−0.0021 (6)−0.0038 (6)
O10.0200 (9)0.0172 (9)0.0191 (9)−0.0040 (7)−0.0094 (7)−0.0055 (7)
N10.0152 (10)0.0135 (10)0.0149 (10)−0.0050 (8)−0.0044 (8)−0.0034 (8)
C60.0159 (11)0.0111 (11)0.0162 (11)−0.0057 (9)−0.0054 (9)−0.0028 (9)
N20.0146 (10)0.0163 (10)0.0153 (10)−0.0068 (8)−0.0055 (8)−0.0014 (8)
C70.0130 (11)0.0138 (12)0.0191 (12)−0.0063 (9)−0.0062 (9)−0.0010 (9)
C50.0155 (11)0.0130 (12)0.0110 (10)−0.0056 (9)−0.0027 (9)−0.0023 (9)
C40.0181 (12)0.0144 (12)0.0177 (12)−0.0074 (10)−0.0028 (9)−0.0033 (9)
C30.0222 (13)0.0105 (11)0.0174 (12)−0.0041 (10)−0.0036 (10)−0.0010 (9)
C110.0174 (12)0.0253 (14)0.0162 (12)−0.0098 (11)−0.0051 (10)−0.0005 (10)
C10.0168 (12)0.0207 (13)0.0186 (12)−0.0064 (10)−0.0045 (9)−0.0065 (10)
C100.0208 (13)0.0283 (15)0.0228 (13)−0.0165 (12)−0.0082 (10)0.0074 (11)
C90.0230 (14)0.0217 (14)0.0346 (16)−0.0151 (12)−0.0106 (12)0.0044 (12)
C20.0170 (12)0.0158 (12)0.0205 (13)−0.0021 (10)−0.0057 (10)−0.0051 (10)
C80.0191 (12)0.0146 (12)0.0329 (15)−0.0085 (10)−0.0083 (11)−0.0021 (11)

Geometric parameters (Å, °)

Br2—Cu12.4592 (4)N2—C111.341 (3)
Br2—Cu22.4613 (4)N2—C71.346 (3)
Br3—Cu22.3507 (4)C7—C81.386 (4)
Br1—Cu12.3862 (4)C5—C41.387 (3)
Br1—Cu1i2.7923 (4)C4—C31.389 (4)
Cu1—O21.9513 (17)C4—H40.9500
Cu1—N11.981 (2)C3—C21.374 (4)
Cu1—Br1i2.7923 (4)C3—H30.9500
Cu1—Cu22.9801 (5)C11—C101.389 (4)
Cu2—O21.9386 (17)C11—H110.9500
Cu2—N21.979 (2)C1—C21.384 (4)
O2—C61.396 (3)C1—H1A0.9500
O1—C61.410 (3)C10—C91.380 (4)
O1—H10.8400C10—H100.9500
N1—C11.344 (3)C9—C81.381 (4)
N1—C51.344 (3)C9—H90.9500
C6—C51.535 (3)C2—H20.9500
C6—C71.542 (3)C8—H80.9500
Cu1—Br2—Cu274.551 (13)O2—C6—C7108.55 (19)
Cu1—Br1—Cu1i87.045 (12)O1—C6—C7109.37 (19)
O2—Cu1—N182.07 (8)C5—C6—C7113.9 (2)
O2—Cu1—Br1172.49 (5)C11—N2—C7119.6 (2)
N1—Cu1—Br199.71 (6)C11—N2—Cu2126.15 (19)
O2—Cu1—Br281.11 (5)C7—N2—Cu2114.21 (17)
N1—Cu1—Br2155.54 (6)N2—C7—C8121.3 (2)
Br1—Cu1—Br294.848 (14)N2—C7—C6115.8 (2)
O2—Cu1—Br1i94.28 (5)C8—C7—C6122.8 (2)
N1—Cu1—Br1i91.84 (6)N1—C5—C4121.0 (2)
Br1—Cu1—Br1i92.955 (12)N1—C5—C6115.0 (2)
Br2—Cu1—Br1i107.004 (14)C4—C5—C6123.9 (2)
O2—Cu1—Cu239.84 (5)C5—C4—C3119.0 (2)
N1—Cu1—Cu2103.54 (6)C5—C4—H4120.5
Br1—Cu1—Cu2132.975 (15)C3—C4—H4120.5
Br2—Cu1—Cu252.757 (10)C2—C3—C4119.8 (2)
Br1i—Cu1—Cu2126.084 (13)C2—C3—H3120.1
O2—Cu2—N282.40 (8)C4—C3—H3120.1
O2—Cu2—Br3172.22 (6)N2—C11—C10121.6 (3)
N2—Cu2—Br399.71 (6)N2—C11—H11119.2
O2—Cu2—Br281.30 (5)C10—C11—H11119.2
N2—Cu2—Br2163.70 (6)N1—C1—C2122.2 (2)
Br3—Cu2—Br296.420 (15)N1—C1—H1A118.9
O2—Cu2—Cu140.15 (5)C2—C1—H1A118.9
N2—Cu2—Cu1113.10 (6)C9—C10—C11119.0 (3)
Br3—Cu2—Cu1142.336 (15)C9—C10—H10120.5
Br2—Cu2—Cu152.692 (10)C11—C10—H10120.5
C6—O2—Cu2117.17 (15)C10—C9—C8119.3 (3)
C6—O2—Cu1117.19 (14)C10—C9—H9120.3
Cu2—O2—Cu1100.01 (8)C8—C9—H9120.3
C6—O1—H1109.5C3—C2—C1118.3 (2)
C1—N1—C5119.6 (2)C3—C2—H2120.8
C1—N1—Cu1124.95 (18)C1—C2—H2120.8
C5—N1—Cu1115.39 (17)C9—C8—C7119.2 (3)
O2—C6—O1111.3 (2)C9—C8—H8120.4
O2—C6—C5109.75 (19)C7—C8—H8120.4
O1—C6—C5104.04 (19)

Symmetry codes: (i) −x+1, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O2ii0.842.333.014 (2)139

Symmetry codes: (ii) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2131).

References

  • Bruker (2002). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Mariezcurrena, R. A., Mombrú, A. W., Suescun, L., Kremer, E. & González, R. (1999). Acta Cryst. C55, 1989–1991.
  • Parker, O. J., Aubol, S. L. & Breneman, G. L. (2000). Polyhedron, 19, 623–626.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, S.-L., Richardson, J. W. Jr, Briggs, S. J., Jacobson, R. A. & Jensen, W. P. (1986). Inorg. Chim. Acta, 111, 67–72.
  • Westcott, B. L., Kopp-Vaughn, K. M., Daniels, L. M. & Zeller, M. (2008). Acta Cryst. E64, m1122–m1123. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography