PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1856–o1857.
Published online 2008 August 30. doi:  10.1107/S1600536808027244
PMCID: PMC2960672

2-{[4-(Phenyldiazenyl)phenyl]iminomethyl}phenol

Abstract

The mol­ecule of the title compound, C19H15N3O, is approximately planar and displays a trans configuration with respect to the C=N and N=N double bonds. An intra­molecular O—H(...)N hydrogen bond generates an S(6) ring motif. The dihedral angles between the hydroxy­phenyl ring and the phenyl and benzene rings are 4.31 (8) and 6.60 (8)°, respectively. The dihedral angle between the phenyl and benzene rings linked by the azo group is 2.70 (8)°. The imino group is coplanar with the hydroxy­phenyl ring, as shown by the C—C—C—N torsion angle of −1.8 (2)°. The azo group is disordered over two position with refined site-occupancy factors of ca 0.87/0.13. In the crystal structure, mol­ecules are linked together by inter­molecular C—H(...)O inter­actions along the c axis and also are packed as one-dimensional extended chains down the b axis.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For related structures, see: Vani & Vijayan (1977 [triangle]); Revannasiddaiah et al. (1997 [triangle]). For background to the applications, see, for example: Liu et al. (1990 [triangle]); Ikeda & Tsutsumi (1995 [triangle]); Evans et al. (1980 [triangle]); Griffiths & Allen et al. (1980 [triangle]); Flamingi & Monti (1985 [triangle]); Leaver et al. (1980 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1856-scheme1.jpg

Experimental

Crystal data

  • C19H15N3O
  • M r = 301.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1856-efi1.jpg
  • a = 26.0537 (10) Å
  • b = 4.5475 (2) Å
  • c = 12.0423 (4) Å
  • β = 90.600 (2)°
  • V = 1426.68 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 100.0 (1) K
  • 0.52 × 0.20 × 0.06 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.955, T max = 0.995
  • 35506 measured reflections
  • 4662 independent reflections
  • 3356 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.071
  • wR(F 2) = 0.212
  • S = 1.08
  • 4662 reflections
  • 220 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.88 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808027244/at2620sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027244/at2620Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thanks the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia and the University of Bath for the award of post-doctoral research fellowships.

supplementary crystallographic information

Comment

Azobenzene and its derivatives have attracted much attention for their high potential in industrial applications, such as liquid crystals, light-driven switches and image-storage devices (Liu et al., 1990; Ikeda & Tsutsumi, 1995). In addition, azo compounds represent the dominant class of synthetic colourant employed in the textile, printing, agrochemical and pharmaceutical industries. As a result of the presence of the stable chromophoric azo group (N═N) which is capabale of linking different aromatic systems with electron-donating and/or electron-withdrawing groups, dyes can be designed to resist chemical or photochemical degradation processes (Evans et al., 1980; Griffiths & Allen, 1980; Leaver et al., 1980; Flamingi & Monti, 1985).

In the title compound (I) (Fig. 1), the molecule adopts a trans configuration with respect to the C═N and N═N double bonds. The bond lengths and angles are within the normal ranges (Allen et al., 1987). An intramolecular O—H···N hydrogen bond generates a S(6) ring motif (Bernstein et al., 1995). The dihedral angles between the hydroxyphenyl ring and the two phenyl rings are 4.31 (8) and 6.60 (8)°, respectively. The dihedral angle between the two phenyl rings joined by the azo group is 2.70 (8)°. The azo group is disordered over two position and the refined site-occupancy factors of the disordered parts are 0.869 (3)/0.131 (3). The imino group is coplanar with the hydroxyohenyl ring as it can be shown by the C1—C6—C7—N1 torsion angle of -1.8 (2)°. In the crystal structure, molecules are linked together by intermolecular C—H···O interactions (Table 1) along the c axis and also are packed as 1-D extended chains down the b axis (Fig. 2).

Experimental

The title compound was synthesized by mixing equimolar amount of the p-phenylazo aniline and salicylaldehyde in ethanol under reflux condition for 1 h. Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement

The H atom bound to the oxygen atom was located from the difference Fourier map and refined freely with the parent atom. The rest of the hydrogen atoms were positioned geometrically and refined as riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The highest peak is located 0.73 Å from C11 and the deepest hole is located 0.66 Å from C19.

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids. Intramolecular hydrogen bond is shown as a dashed line. Open bonds indicate the minor disordered component.
Fig. 2.
The crystal packing of the major component of (I), viewed down the b-axis, showing stacking of molecules. Intramolecular and intermolecular interactions are shown as dashed lines.
Fig. 3.
The crystal structure of the major component of (I), showing 1-D extended chains along the b-axis. Intramolecular and intermolecular interactions are shown as dashed lines.

Crystal data

C19H15N3OF000 = 632
Mr = 301.34Dx = 1.403 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4872 reflections
a = 26.0537 (10) Åθ = 3.1–31.1º
b = 4.5475 (2) ŵ = 0.09 mm1
c = 12.0423 (4) ÅT = 100.0 (1) K
β = 90.600 (2)ºPlate, yellow
V = 1426.68 (10) Å30.52 × 0.20 × 0.06 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer4662 independent reflections
Radiation source: fine-focus sealed tube3356 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.053
T = 100.0(1) Kθmax = 31.4º
[var phi] and ω scansθmin = 0.8º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −38→38
Tmin = 0.955, Tmax = 0.995k = −6→6
35506 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.212  w = 1/[σ2(Fo2) + (0.1093P)2 + 0.6819P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
4662 reflectionsΔρmax = 0.88 e Å3
220 parametersΔρmin = −0.52 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.34931 (5)−0.2401 (3)0.48842 (10)0.0256 (3)
N10.31269 (5)0.0728 (3)0.64837 (11)0.0163 (3)
N2A0.16497 (6)0.9300 (4)0.75288 (13)0.0178 (4)0.869 (3)
N3A0.16275 (6)1.0337 (4)0.85014 (13)0.0181 (4)0.869 (3)
N2B0.1809 (4)0.924 (3)0.8304 (9)0.0178 (4)0.131 (3)
N3B0.1469 (5)1.036 (3)0.7639 (9)0.0181 (4)0.131 (3)
C10.38180 (6)−0.3582 (4)0.56362 (13)0.0188 (3)
C20.41797 (7)−0.5647 (4)0.52832 (14)0.0226 (4)
H2A0.4196−0.61720.45380.027*
C30.45127 (7)−0.6905 (4)0.60503 (15)0.0240 (4)
H3A0.4757−0.82470.58110.029*
C40.44882 (6)−0.6195 (4)0.71718 (14)0.0225 (4)
H4A0.4709−0.70860.76810.027*
C50.41316 (6)−0.4151 (4)0.75211 (14)0.0202 (3)
H5A0.4115−0.36680.82700.024*
C60.37947 (6)−0.2794 (3)0.67662 (13)0.0164 (3)
C70.34330 (6)−0.0621 (4)0.71608 (13)0.0169 (3)
H7A0.3421−0.01910.79150.020*
C80.27744 (6)0.2872 (3)0.68533 (13)0.0165 (3)
C90.24374 (6)0.3987 (4)0.60503 (14)0.0197 (3)
H9A0.24570.33060.53240.024*
C100.20753 (6)0.6087 (4)0.63155 (15)0.0227 (4)
H10A0.18520.67890.57700.027*
C110.20438 (6)0.7148 (4)0.73884 (15)0.0224 (4)
C120.23831 (7)0.6073 (4)0.82083 (15)0.0236 (4)
H12A0.23650.67830.89310.028*
C130.27454 (6)0.3952 (4)0.79410 (13)0.0199 (3)
H13A0.29690.32480.84850.024*
C140.12253 (7)1.2474 (4)0.86184 (16)0.0252 (4)
C150.08839 (7)1.3377 (4)0.77750 (16)0.0270 (4)
H15A0.09081.25910.70650.032*
C160.05072 (7)1.5467 (4)0.80128 (15)0.0256 (4)
H16A0.02791.60820.74600.031*
C170.04748 (6)1.6621 (4)0.90783 (15)0.0230 (4)
H17A0.02221.79950.92420.028*
C180.08194 (7)1.5724 (4)0.98979 (15)0.0254 (4)
H18A0.07981.65151.06080.031*
C190.11925 (7)1.3670 (4)0.96659 (16)0.0263 (4)
H19A0.14231.30901.02190.032*
H1O10.3277 (10)−0.093 (6)0.530 (2)0.051 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0321 (7)0.0284 (7)0.0164 (5)0.0085 (5)0.0000 (5)−0.0010 (5)
N10.0171 (6)0.0130 (6)0.0188 (6)−0.0002 (5)0.0030 (5)−0.0009 (5)
N2A0.0183 (8)0.0145 (8)0.0206 (7)0.0000 (6)0.0030 (6)−0.0009 (6)
N3A0.0181 (8)0.0152 (8)0.0212 (7)0.0002 (6)0.0036 (6)−0.0018 (6)
N2B0.0183 (8)0.0145 (8)0.0206 (7)0.0000 (6)0.0030 (6)−0.0009 (6)
N3B0.0181 (8)0.0152 (8)0.0212 (7)0.0002 (6)0.0036 (6)−0.0018 (6)
C10.0203 (7)0.0171 (8)0.0190 (7)0.0001 (6)0.0032 (6)0.0003 (6)
C20.0263 (8)0.0204 (8)0.0213 (7)0.0027 (7)0.0077 (6)−0.0029 (6)
C30.0218 (8)0.0180 (8)0.0323 (9)0.0036 (6)0.0085 (6)−0.0017 (7)
C40.0192 (8)0.0198 (8)0.0284 (8)0.0008 (6)−0.0002 (6)0.0014 (6)
C50.0205 (7)0.0189 (8)0.0213 (7)−0.0007 (6)−0.0004 (6)−0.0010 (6)
C60.0154 (7)0.0146 (7)0.0192 (7)−0.0014 (5)0.0031 (5)−0.0004 (6)
C70.0178 (7)0.0158 (7)0.0172 (7)−0.0015 (6)0.0021 (5)−0.0011 (6)
C80.0156 (7)0.0130 (7)0.0210 (7)−0.0012 (5)0.0044 (5)−0.0013 (6)
C90.0190 (7)0.0159 (8)0.0241 (8)0.0005 (6)0.0015 (6)0.0007 (6)
C100.0198 (8)0.0162 (8)0.0322 (9)0.0007 (6)0.0006 (6)0.0029 (7)
C110.0186 (7)0.0136 (8)0.0353 (9)−0.0004 (6)0.0089 (6)−0.0003 (7)
C120.0274 (8)0.0186 (8)0.0249 (8)−0.0044 (7)0.0096 (6)−0.0049 (6)
C130.0215 (8)0.0184 (8)0.0200 (7)−0.0014 (6)0.0058 (6)−0.0026 (6)
C140.0194 (8)0.0139 (8)0.0426 (10)−0.0005 (6)0.0083 (7)0.0010 (7)
C150.0304 (9)0.0222 (9)0.0286 (9)−0.0042 (7)0.0081 (7)−0.0068 (7)
C160.0235 (8)0.0243 (9)0.0289 (8)−0.0010 (7)0.0002 (7)−0.0009 (7)
C170.0195 (8)0.0185 (8)0.0310 (9)0.0039 (6)0.0065 (6)−0.0006 (7)
C180.0278 (9)0.0217 (9)0.0268 (8)−0.0008 (7)0.0027 (6)0.0013 (7)
C190.0215 (8)0.0198 (9)0.0376 (10)−0.0002 (6)0.0002 (7)0.0062 (7)

Geometric parameters (Å, °)

O1—C11.345 (2)C8—C91.395 (2)
O1—H1O11.01 (3)C8—C131.402 (2)
N1—C71.290 (2)C9—C101.382 (2)
N1—C81.4146 (19)C9—H9A0.9300
N2A—N3A1.264 (2)C10—C111.383 (2)
N2A—C111.430 (2)C10—H10A0.9300
N3A—C141.437 (2)C11—C121.406 (3)
N2B—N3B1.292 (17)C12—C131.390 (2)
N2B—C111.584 (12)C12—H12A0.9300
N3B—C141.655 (12)C13—H13A0.9300
C1—C21.400 (2)C14—C191.377 (3)
C1—C61.409 (2)C14—C151.404 (3)
C2—C31.384 (3)C15—C161.398 (2)
C2—H2A0.9300C15—H15A0.9300
C3—C41.391 (2)C16—C171.390 (2)
C3—H3A0.9300C16—H16A0.9300
C4—C51.383 (2)C17—C181.388 (3)
C4—H4A0.9300C17—H17A0.9300
C5—C61.400 (2)C18—C191.379 (2)
C5—H5A0.9300C18—H18A0.9300
C6—C71.449 (2)C19—H19A0.9300
C7—H7A0.9300
C1—O1—H1O1106.4 (15)C9—C10—H10A119.9
C7—N1—C8121.88 (13)C10—C11—C12119.47 (15)
N3A—N2A—C11113.87 (16)C10—C11—N2A113.52 (16)
N2A—N3A—C14112.55 (17)C12—C11—N2A127.01 (16)
N3B—N2B—C1194.1 (9)C10—C11—N2B152.5 (4)
N2B—N3B—C1493.0 (9)C12—C11—N2B88.0 (4)
O1—C1—C2118.98 (14)N2A—C11—N2B39.1 (4)
O1—C1—C6121.03 (14)C13—C12—C11120.14 (15)
C2—C1—C6119.99 (15)C13—C12—H12A119.9
C3—C2—C1119.58 (15)C11—C12—H12A119.9
C3—C2—H2A120.2C12—C13—C8120.20 (16)
C1—C2—H2A120.2C12—C13—H13A119.9
C2—C3—C4121.16 (15)C8—C13—H13A119.9
C2—C3—H3A119.4C19—C14—C15120.13 (16)
C4—C3—H3A119.4C19—C14—N3A114.16 (16)
C5—C4—C3119.28 (16)C15—C14—N3A125.71 (17)
C5—C4—H4A120.4C19—C14—N3B155.6 (5)
C3—C4—H4A120.4C15—C14—N3B84.2 (4)
C4—C5—C6121.14 (15)N3A—C14—N3B41.5 (4)
C4—C5—H5A119.4C16—C15—C14119.43 (17)
C6—C5—H5A119.4C16—C15—H15A120.3
C5—C6—C1118.81 (14)C14—C15—H15A120.3
C5—C6—C7119.53 (14)C17—C16—C15119.70 (17)
C1—C6—C7121.66 (14)C17—C16—H16A120.2
N1—C7—C6121.13 (14)C15—C16—H16A120.2
N1—C7—H7A119.4C18—C17—C16120.02 (16)
C6—C7—H7A119.4C18—C17—H17A120.0
C9—C8—C13118.75 (14)C16—C17—H17A120.0
C9—C8—N1116.01 (14)C19—C18—C17120.46 (17)
C13—C8—N1125.24 (14)C19—C18—H18A119.8
C10—C9—C8121.15 (15)C17—C18—H18A119.8
C10—C9—H9A119.4C14—C19—C18120.25 (17)
C8—C9—H9A119.4C14—C19—H19A119.9
C11—C10—C9120.29 (16)C18—C19—H19A119.9
C11—C10—H10A119.9
C11—N2A—N3A—C14−179.52 (13)N3A—N2A—C11—N2B−0.3 (6)
C11—N2B—N3B—C14179.1 (5)N3B—N2B—C11—C103.7 (14)
O1—C1—C2—C3−179.29 (16)N3B—N2B—C11—C12−178.6 (7)
C6—C1—C2—C30.0 (3)N3B—N2B—C11—N2A−0.4 (5)
C1—C2—C3—C41.3 (3)C10—C11—C12—C13−0.2 (3)
C2—C3—C4—C5−1.4 (3)N2A—C11—C12—C13179.56 (16)
C3—C4—C5—C60.2 (3)N2B—C11—C12—C13−179.0 (4)
C4—C5—C6—C11.1 (2)C11—C12—C13—C8−0.1 (2)
C4—C5—C6—C7−178.82 (15)C9—C8—C13—C120.6 (2)
O1—C1—C6—C5178.15 (15)N1—C8—C13—C12179.81 (14)
C2—C1—C6—C5−1.2 (2)N2A—N3A—C14—C19−179.48 (15)
O1—C1—C6—C7−2.0 (2)N2A—N3A—C14—C150.2 (3)
C2—C1—C6—C7178.71 (15)N2A—N3A—C14—N3B−0.7 (6)
C8—N1—C7—C6−179.47 (13)N2B—N3B—C14—C192.8 (15)
C5—C6—C7—N1178.11 (15)N2B—N3B—C14—C15−179.1 (8)
C1—C6—C7—N1−1.8 (2)N2B—N3B—C14—N3A0.1 (5)
C7—N1—C8—C9−174.95 (15)C19—C14—C15—C16−0.8 (3)
C7—N1—C8—C135.8 (2)N3A—C14—C15—C16179.45 (16)
C13—C8—C9—C10−0.9 (2)N3B—C14—C15—C16−179.9 (4)
N1—C8—C9—C10179.83 (14)C14—C15—C16—C17−0.1 (3)
C8—C9—C10—C110.6 (3)C15—C16—C17—C180.8 (3)
C9—C10—C11—C120.0 (3)C16—C17—C18—C19−0.6 (3)
C9—C10—C11—N2A−179.87 (15)C15—C14—C19—C181.0 (3)
C9—C10—C11—N2B177.3 (9)N3A—C14—C19—C18−179.21 (15)
N3A—N2A—C11—C10−178.25 (15)N3B—C14—C19—C18178.8 (10)
N3A—N2A—C11—C121.9 (3)C17—C18—C19—C14−0.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O1···N11.01 (3)1.66 (2)2.5853 (18)150 (2)
C5—H5A···O1i0.932.593.386 (2)144

Symmetry codes: (i) x, −y−1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2620).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Evans, N. A., Allen, N. S. & McKellar, J. F. (1980). Photochemistry of Dyed and Pigmented Polymers, pp. 93–159. London: Elsevier.
  • Flamingi, L. & Monti, S. (1985). J. Phys. Chem.89, 3702–3707.
  • Griffiths, J. & Allen, N. S. (1980). Developments in Polymer Photochemistry, Vol. 1, pp. 145–189. London: Applied Science Publishers.
  • Ikeda, T. & Tsutsumi, O. (1995). Science, 268, 1873–1875. [PubMed]
  • Leaver, I. H., Allen, N. S. & McKellar, J. F. (1980). Photochemistry of Dyed and Pigmented Polymers, pp. 161–245. London: Elsevier.
  • Liu, Z. F., Hashimoto, K. & Fujishima, A. (1990). Nature (London), 347, 658–660.
  • Revannasiddaiah, D., Lokanath, N. K., Sridhar, M. A., Prasad, J. S. & Gowda, D. K. (1997). Z. Kristallogr.212, 387–388.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Vani, G. V. & Vijayan, K. (1977). Acta Cryst. B33, 2236–2240.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography