PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1835.
Published online 2008 August 30. doi:  10.1107/S1600536808026998
PMCID: PMC2960667

(3S,4S,5S)-4-Hydr­oxy-3-methyl-5-[(2S,3R)-3-methyl­pent-4-en-2-yl]-4,5-dihydro­furan-2(3H)-one

Abstract

The title compound, C11H18O3, was synthesized to prove the relative configuration of the corresponding acyclic C1—C8 stereopentade. Mol­ecules are linked via O—H(...)O hydrogen bonds, forming a chain along the b axis.

Related literature

For related literature, see: Abraham et al. (2004a [triangle],b [triangle]); Corey & Snider (1972 [triangle]); Evans et al. (1981 [triangle], 1999 [triangle]); Körner & Hiersemann (2006 [triangle], 2007 [triangle]); Pollex & Hiersemann (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1835-scheme1.jpg

Experimental

Crystal data

  • C11H18O3
  • M r = 198.25
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1835-efi1.jpg
  • a = 5.4414 (14) Å
  • b = 10.132 (2) Å
  • c = 20.975 (8) Å
  • V = 1156.4 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 291 (1) K
  • 0.36 × 0.06 × 0.02 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 7554 measured reflections
  • 1223 independent reflections
  • 346 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.087
  • S = 0.97
  • 1223 reflections
  • 131 parameters
  • H-atom parameters constrained
  • Δρmax = 0.09 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808026998/bt2768sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026998/bt2768Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title compound, (I), was synthesized using a catalytic asymmetric Claisen rearrangement (Abraham et al., 2004a; Abraham et al., 2004b; Pollex & Hiersemann, 2005; Körner & Hiersemann, 2006; Körner & Hiersemann, 2007), a diastereoselective reduction with K-Selectride (Körner & Hiersemann, 2006; Körner & Hiersemann, 2007), and an Evans aldol addition (Evans et al., 1981). In order to verify the relative configuration of the obtained aldol adduct, 4-(tert-butyldimethylsilyloxy)-3-hydroxy-2,5,6-trimethyloct-7-enoyl)-4-isopropyloxazolidin-2-one, (II), a γ-lactone, (I), was prepared by removal of the silyl protecting group (Corey & Snider, 1972) and subsequent in situ lactonization. Fig. 1 depicts the structure of the isolated major diastereomer (I). The configuration of the chiral C atoms in (I) can be attributed to the stereochemical course of the Evans aldol addition (C3 S and C4 S), the diastereoselective reduction with K-Selectride (C5 S), and the catalytic asymmetric Claisen rearrangement (C(2) S and C(3) R) using the chiral Lewis acid [Cu{(S,S)-tert-Butyl-box}](H2O)2(SbF6)2 (Evans et al., 1999).

Experimental

The title compound, (I), was synthesized from the corresponding syn-aldol adduct, (II), using tetrabutylammonium fluoride (Corey & Snider, 1972) for the removal of the silyl protecting group. The subsequent lactonization proceeded in situ.

To a solution of diastereomerically pure (II) (50 mg, 0.113 mmol, 1.0 eq) in dry tetrahydrofuran (1 ml) was added TBAF (1 M in tetrahydrofuran, 0.34 ml, 3.0 eq) at 273 K. The mixture was stirred at 273 K for 25 min. The reaction was then quenched by the addition of sat. aqueous NaHCO3 solution. The phases were separated, and the aqueous phase was extracted with CH2Cl2. The combined organic layers were dried over MgSO4 and concentrated under reduced pressure. Flash chromatography (isohexane/ethyl acetate 20/1 to 10/1) afforded (I) as a single diastereomer and additionally a mixture of (I) and the minor diastereomer with an overall yield of 96% (21.4 mg, 0.108 mmol) as colourless crystals. Single crystals of (I) were obtained by vapor diffusion recrystallization technique from isohexane and ethyl acetate to yield colourless needles: mp 374 K; Rf 0.28 (cyclohexane/ethyl acetate 2/1); 1H NMR (CDCl3, 400 MHz, δ): 0.83 (d, J = 7.0 Hz, 3H), 0.98 (d, J = 6.8 Hz, 3H), 1.30 (d, J = 7.8 Hz, 3H), 2.21 (dqd, J = 10.7, 7.0, 3.3 Hz, 1H), 2.64 (q, J = 7.8 Hz, 1H) overlapped by 2.61 - 2.76 (m, 1H), 4.14 (d, J = 3.4 Hz, 1H), 4.23 (dd, J = 10.7, 3.4 Hz, 1H), 5.04 (dd, 3J(Z) = 11.0 Hz, 2J = 1.5 Hz, 1H), 5.05 (dd, 3J(E) = 17.0 Hz, 2J = 1.5 Hz, 1H), 5.84 (ddd, 3J(E) = 17.0 Hz, 3J(Z) = 11.0 Hz, 3J = 6.3 Hz, 1H); 13C NMR (CDCl3, 100 MHz, δ): 9.8 (CH3), 12.5 (CH3), 13.7 (CH3), 35.6 (CH), 37.2 (CH), 46.5 (CH), 75.0 (CH), 83.9 (CH), 114.4 (CH2), 142.7 (CH), 179.1 (C); IR (cm-1): 3520(br,s) (ν O—H, OH in H-bridges), 3085(w) (ν C—H, olefin), 2975(m) 2940(m) 2885(s) 2855(w) (νas,s C—H, CH2, CH3, CH), 1755(s) (ν C=O, lactone), 1640(w) (ν C=C), 1455(m) (δas C—H, CH3, CH2), 1385(m) (δs C—H, CH3); Anal. Calcd. for C11H18O3: C, 66.6; H, 9.2; Found: C, 66.5; H, 9.3; [α]D20 -14.5 (c 0.775, CHCl3).

Refinement

The H atoms were geometrically placed (C-H = 0.93-0.98, O-H = 0.82 Å) and refined as riding with Uiso(H) = 1.2eq(C, O) or 1.5Ueq(methyl C).

Figures

Fig. 1.
: The molecular structure of the title compound, showing the labelling of all non-H atoms. Displacement ellipsoids are shown at the 30% probability level.

Crystal data

C11H18O3F000 = 432
Mr = 198.25Dx = 1.139 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7554 reflections
a = 5.4414 (14) Åθ = 2.8–25.0º
b = 10.132 (2) ŵ = 0.08 mm1
c = 20.975 (8) ÅT = 291 (1) K
V = 1156.4 (6) Å3Needle, colourless
Z = 40.36 × 0.06 × 0.02 mm

Data collection

Nonius KappaCCD diffractometer1223 independent reflections
Radiation source: fine-focus sealed tube346 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.048
Detector resolution: 19 vertical, 18 horizontal pixels mm-1θmax = 25.0º
T = 291(1) Kθmin = 2.8º
111 frames via ω–rotation (Δω=2%) and two times 180 s per frame (three sets at different κ–angles) scansh = −6→6
Absorption correction: nonek = −12→12
7554 measured reflectionsl = −24→24

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.087  [1.0 exp(5.65(sinθ/λ)2)]/[σ2(Fo2)]
S = 0.97(Δ/σ)max = 0.007
1223 reflectionsΔρmax = 0.09 e Å3
131 parametersΔρmin = −0.13 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.1778 (7)0.0092 (4)−0.3153 (2)0.0647 (11)
O20.4408 (8)0.0462 (4)−0.2370 (2)0.0971 (19)
O30.3095 (10)−0.2710 (5)−0.3391 (2)0.0890 (15)
H30.4090−0.3080−0.31580.133*
C10.2948 (12)−0.0261 (7)−0.2615 (3)0.075 (2)
C20.2076 (11)−0.1595 (6)−0.2396 (3)0.0641 (19)
H2A0.3449−0.2114−0.22270.077*
C30.1142 (11)−0.2191 (6)−0.3017 (3)0.0635 (19)
H3B−0.0147−0.2849−0.29420.076*
C40.0156 (11)−0.0982 (5)−0.3372 (3)0.0596 (18)
H4A−0.1522−0.0803−0.32270.072*
C50.0176 (10)−0.1020 (6)−0.4090 (3)0.0578 (17)
H5A0.1854−0.1235−0.42250.069*
C6−0.0502 (11)0.0338 (6)−0.4390 (3)0.069 (2)
H6A0.06270.0986−0.42050.082*
C70.0064 (15)0.0286 (7)−0.5094 (4)0.107 (3)
H7A0.1591−0.0070−0.51930.129*
C8−0.1131 (18)0.0629 (9)−0.5549 (4)0.170 (4)
H8A−0.26810.0996−0.54910.205*
H8B−0.05010.0527−0.59580.205*
C90.0066 (12)−0.1412 (5)−0.1883 (3)0.093 (2)
H9A−0.0491−0.2261−0.17400.140*
H9B−0.1291−0.0932−0.20620.140*
H9C0.0731−0.0929−0.15290.140*
C10−0.1534 (11)−0.2165 (5)−0.4322 (3)0.085 (2)
H10A−0.0821−0.2998−0.42070.128*
H10B−0.1712−0.2119−0.47770.128*
H10C−0.3118−0.2079−0.41250.128*
C11−0.3096 (12)0.0798 (6)−0.4222 (3)0.102 (3)
H11A−0.33760.1657−0.44010.152*
H11B−0.32690.0840−0.37670.152*
H11C−0.42730.0187−0.43930.152*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.064 (3)0.056 (3)0.074 (3)−0.002 (3)−0.011 (3)−0.006 (2)
O20.091 (4)0.110 (4)0.091 (4)−0.027 (3)−0.026 (3)−0.012 (3)
O30.105 (4)0.080 (3)0.083 (3)0.034 (3)0.005 (3)0.002 (3)
C10.062 (6)0.083 (6)0.081 (6)0.010 (5)−0.004 (5)−0.010 (5)
C20.073 (5)0.065 (5)0.054 (5)0.008 (4)−0.013 (4)0.009 (3)
C30.072 (5)0.048 (4)0.071 (5)0.000 (4)0.009 (4)0.005 (4)
C40.053 (5)0.056 (4)0.070 (5)0.000 (4)0.002 (4)−0.006 (4)
C50.039 (4)0.068 (4)0.066 (5)0.001 (4)−0.002 (4)−0.008 (4)
C60.072 (6)0.073 (4)0.061 (5)0.005 (4)−0.013 (4)0.009 (4)
C70.133 (7)0.106 (6)0.082 (7)0.050 (6)−0.028 (6)0.007 (5)
C80.233 (13)0.159 (9)0.119 (10)−0.006 (8)−0.019 (9)0.019 (7)
C90.119 (7)0.089 (5)0.071 (6)0.002 (5)0.021 (6)0.004 (4)
C100.094 (6)0.078 (5)0.084 (5)−0.016 (4)−0.015 (5)−0.013 (4)
C110.085 (6)0.111 (6)0.109 (6)0.048 (5)0.007 (5)0.021 (4)

Geometric parameters (Å, °)

O1—C11.344 (6)C6—C71.508 (8)
O1—C41.475 (6)C6—C111.527 (6)
O2—C11.196 (6)C6—H6A0.9800
O3—C31.422 (6)C7—C81.207 (8)
O3—H30.8200C7—H7A0.9300
C1—C21.504 (7)C8—H8A0.9300
C2—C31.523 (7)C8—H8B0.9300
C2—C91.546 (7)C9—H9A0.9600
C2—H2A0.9800C9—H9B0.9600
C3—C41.531 (6)C9—H9C0.9600
C3—H3B0.9800C10—H10A0.9600
C4—C51.506 (6)C10—H10B0.9600
C4—H4A0.9800C10—H10C0.9600
C5—C61.557 (6)C11—H11A0.9600
C5—C101.564 (7)C11—H11B0.9600
C5—H5A0.9800C11—H11C0.9600
C1—O1—C4110.5 (5)C7—C6—C5108.4 (5)
C3—O3—H3109.5C11—C6—C5113.3 (5)
O2—C1—O1120.8 (7)C7—C6—H6A106.5
O2—C1—C2129.0 (7)C11—C6—H6A106.5
O1—C1—C2110.2 (6)C5—C6—H6A106.5
C1—C2—C3101.6 (5)C8—C7—C6130.9 (9)
C1—C2—C9109.1 (5)C8—C7—H7A114.6
C3—C2—C9114.0 (6)C6—C7—H7A114.6
C1—C2—H2A110.6C7—C8—H8A120.0
C3—C2—H2A110.6C7—C8—H8B120.0
C9—C2—H2A110.6H8A—C8—H8B120.0
O3—C3—C2111.7 (5)C2—C9—H9A109.5
O3—C3—C4106.8 (5)C2—C9—H9B109.5
C2—C3—C4102.5 (5)H9A—C9—H9B109.5
O3—C3—H3B111.8C2—C9—H9C109.5
C2—C3—H3B111.8H9A—C9—H9C109.5
C4—C3—H3B111.8H9B—C9—H9C109.5
O1—C4—C5109.1 (5)C5—C10—H10A109.5
O1—C4—C3103.2 (4)C5—C10—H10B109.5
C5—C4—C3117.6 (5)H10A—C10—H10B109.5
O1—C4—H4A108.8C5—C10—H10C109.5
C5—C4—H4A108.8H10A—C10—H10C109.5
C3—C4—H4A108.8H10B—C10—H10C109.5
C4—C5—C6112.3 (5)C6—C11—H11A109.5
C4—C5—C10109.0 (5)C6—C11—H11B109.5
C6—C5—C10112.8 (5)H11A—C11—H11B109.5
C4—C5—H5A107.5C6—C11—H11C109.5
C6—C5—H5A107.5H11A—C11—H11C109.5
C10—C5—H5A107.5H11B—C11—H11C109.5
C7—C6—C11115.1 (5)
C4—O1—C1—O2177.8 (6)C2—C3—C4—O131.7 (6)
C4—O1—C1—C2−3.8 (7)O3—C3—C4—C534.3 (8)
O2—C1—C2—C3−157.8 (7)C2—C3—C4—C5151.8 (5)
O1—C1—C2—C324.0 (7)O1—C4—C5—C6−54.5 (6)
O2—C1—C2—C981.5 (9)C3—C4—C5—C6−171.5 (5)
O1—C1—C2—C9−96.7 (6)O1—C4—C5—C10179.7 (5)
C1—C2—C3—O380.8 (6)C3—C4—C5—C1062.7 (7)
C9—C2—C3—O3−162.0 (5)C4—C5—C6—C7168.6 (6)
C1—C2—C3—C4−33.2 (6)C10—C5—C6—C7−67.7 (7)
C9—C2—C3—C484.0 (6)C4—C5—C6—C11−62.3 (7)
C1—O1—C4—C5−143.8 (5)C10—C5—C6—C1161.4 (7)
C1—O1—C4—C3−18.0 (6)C11—C6—C7—C85.6 (14)
O3—C3—C4—O1−85.8 (5)C5—C6—C7—C8133.7 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.822.022.798 (6)158

Symmetry codes: (i) −x+1, y−1/2, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2768).

References

  • Abraham, L., Körner, M. & Hiersemann, M. (2004b). Tetrahedron Lett.45, 3647–3650.
  • Abraham, L., Körner, M., Schwab, P. & Hiersemann, M. (2004a). Adv. Synth. Catal.346, 1281–1294.
  • Corey, E. J. & Snider, B. B. (1972). J. Am. Chem. Soc.94, 2549–2550. [PubMed]
  • Evans, D. A., Bartroli, J. & Shih, T. L. (1981). J. Am. Chem. Soc.103, 2127–2129.
  • Evans, D. A., Miller, S. J., Lectka, T. & von Matt, P. (1999). J. Am. Chem. Soc.121, 7559–7573.
  • Körner, M. & Hiersemann, M. (2006). Synlett, pp. 121–123.
  • Körner, M. & Hiersemann, M. (2007). Org. Lett.9, 4979–4982. [PubMed]
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. and R. M. Sweet, pp. 307–326, New York: Academic Press.
  • Pollex, A. & Hiersemann, M. (2005). Org. Lett.7, 5705–5708. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography