PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1171–m1172.
Published online 2008 August 16. doi:  10.1107/S160053680802583X
PMCID: PMC2960666

Bis(μ-biphenyl-2,2′-dicarboxyl­ato)bis­[(2,2′-bipyridine)copper(II)]

Abstract

The title compound, [Cu2(C14H8O4)2(C10H8N2)2], is a centrosymmetric binuclear copper(II) complex, with a Cu(...)Cu separation of 6.136 (16) Å. The Cu atom displays a cis-CuN2O2 square-planar geometry, although two long (> 2.43 Å) Cu(...)O contacts complete a distorted cis-CuN2O4 octa­hedron. Extensive C—H(...)O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For related literature, see: Bu et al. (2004 [triangle]); He et al. (2007 [triangle]); Huang et al. (2004 [triangle]); Long et al. (2001 [triangle]); Ma et al. (2003 [triangle]); Rao et al. (2004 [triangle]); Yaghi et al. (2003 [triangle]); Yang et al. (2002 [triangle]); Zhang et al. (2004 [triangle]); Zhu et al. (2001 [triangle]); He & Zhu (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1171-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C14H8O4)2(C10H8N2)2]
  • M r = 1839.75
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1171-efi1.jpg
  • a = 11.234 (2) Å
  • b = 13.336 (3) Å
  • c = 15.431 (6) Å
  • β = 122.16 (2)°
  • V = 1957.1 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.15 mm−1
  • T = 293 (2) K
  • 0.40 × 0.26 × 0.23 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.708, T max = 0.771
  • 18687 measured reflections
  • 4472 independent reflections
  • 3708 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.118
  • S = 1.03
  • 4472 reflections
  • 280 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.60 e Å−3

Data collection: SMART (Siemens, 1994 [triangle]); cell refinement: SAINT (Siemens, 1994 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680802583X/om2255sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802583X/om2255Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Project of Fujian Science and Technology Committee (grant No. 2006F5067), the Natural Science Foundation of Fujian Province (grant Nos. 2008J0172 and 2008J0237) and a Student Innovation Project of Zhangzhou Normal University (grant No. 08xscxxsyxm25).

supplementary crystallographic information

Comment

Design and assembly of metal-involved supramolecular architectures are currently of great interest in the field of supramolecular chemistry and crystal engineering because they can provide novel topology and functional materials (Yaghi et al.,2003; Rao et al.,2004). During the past decades, extensive efforts have been focused on the design and assembly of such kinds of supramolecular architectures (Huang et al.,2004; Zhang et al., 2004). By precisely selecting the modular building unit, chemists now have successfully synthesized a great variety of one-dimensional, two-dimensional, and three-dimensional supramolecular architectures (Bu et al., 2004; Ma et al., 2003; Yang et al., 2002; Long et al., 2001). Binuclear copper(II) complexes have been intensely investigated owing to their potential application as magnetic materials and catalysts (Zhu et al., 2001).In this work, we employed H2dpa (dpa = diphenyl-2,2'-dicarboxylato dianion) and 2,2'-bipyridine(bipy) ligands for producing a binuclear complex, [Cu2(C14H8O4)2(C10H8N2)2].

The compound contains a centrosymmetric binuclear complex. The copper(II) atom in the title compound adopts a distorted square geometry (Table 1, Fig. 1). The bipy ligand shows its classical bidentate coordination mode, with a similar Cu—N bond length to that the related complex [Cu2(C14H8O4)2(C10H8N2)2].4H2O (He et al., 2007). The dpa ligand adopts a µ-bridged coordination and the dihedral angle between its aromatic rings is 78.27°. As well as the short Cu—O bonds, two long Cu—O (Cu(1)—O(2): 2.434 (44) Å; Cu(1)—O(3):2.557 (31) Å) contacts that might be regarded as secondary bonds (He & Zhu, 2003) complete a distorted octahedron. The Cu···Cui (i = 1 - x, -y, -z) distance bridged by the dpa ligands is 6.136 (16) Å. Extensive C—H···O hydrogen bonds link molecules into a three-dimensional network.(Table 2, Fig.2).

Experimental

A solution of Cu(NO3)2.6H2O(0.0705 g) in 5 ml of water was added dropwise under continuous stirring to an aqueous solution (5 ml) of diphenyl-2,2'-dicarboxylic acid (0.0734 g) and 2,2'-bipyridine (0.0312 g). The resulting mixture was then transferred into a 25 ml Teflon-lined stainless steel vessel, which was sealed and heated to 423 K for 72 h, then cooled to room temperature. The block blue single crystals were obtained.

Refinement

The phenyl H atoms were positioned geometrically and allowed to ride during subsequent refinement, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of the structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level; H-atoms are shown as small spheres of arbitrary radius.
Fig. 2.
View of the 3D hydrogen-bonded network in the packing of the title compound.The packing is viewed along the b axis; C—H···O interactions are shown as dashed lines.

Crystal data

[Cu2(C14H8O4)2(C10H8N2)2]F000 = 940
Mr = 1839.75Dx = 1.561 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19150 reflections
a = 11.234 (2) Åθ = 3.1–27.4º
b = 13.336 (3) ŵ = 1.15 mm1
c = 15.431 (6) ÅT = 293 (2) K
β = 122.16 (2)ºBlock, blue
V = 1957.1 (9) Å30.40 × 0.26 × 0.23 mm
Z = 2

Data collection

Siemens SMART CCD area-detector diffractometer4472 independent reflections
Radiation source: fine-focus sealed tube3708 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.046
T = 293(2) Kθmax = 27.4º
ω scansθmin = 3.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −14→14
Tmin = 0.708, Tmax = 0.771k = −17→17
18687 measured reflectionsl = −18→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.118  w = 1/[σ2(Fo2) + (0.08P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4472 reflectionsΔρmax = 0.29 e Å3
280 parametersΔρmin = −0.60 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.63909 (3)−0.160660 (19)−0.059678 (18)0.02914 (12)
O10.70349 (16)−0.04363 (11)0.03157 (11)0.0354 (4)
O20.8638 (2)−0.16096 (12)0.10287 (15)0.0530 (5)
O30.62962 (19)0.15631 (14)0.16045 (14)0.0480 (5)
O40.47467 (16)0.21452 (12)0.00754 (11)0.0374 (4)
N10.68794 (18)−0.10223 (14)−0.15551 (13)0.0320 (4)
N20.63566 (18)−0.28542 (14)−0.13069 (14)0.0331 (4)
C10.7186 (2)−0.00573 (19)−0.15928 (18)0.0406 (5)
H1A0.72270.0390−0.11150.049*
C20.7441 (3)0.0289 (2)−0.2320 (2)0.0504 (7)
H2A0.76640.0959−0.23270.060*
C30.7361 (3)−0.0368 (2)−0.3032 (2)0.0531 (7)
H3A0.7514−0.0145−0.35360.064*
C40.7051 (3)−0.1367 (2)−0.29961 (19)0.0462 (6)
H4A0.7002−0.1823−0.34700.055*
C50.6486 (3)−0.3529 (2)−0.2682 (2)0.0487 (7)
H5A0.6566−0.3429−0.32460.058*
C60.6319 (3)−0.4472 (2)−0.2420 (3)0.0585 (8)
H6A0.6296−0.5022−0.28000.070*
C70.6184 (3)−0.4608 (2)−0.1591 (2)0.0540 (7)
H7A0.6097−0.5248−0.13920.065*
C80.6181 (3)−0.37789 (19)−0.1068 (2)0.0444 (6)
H8A0.6053−0.3865−0.05250.053*
C90.6815 (2)−0.16746 (17)−0.22479 (17)0.0332 (5)
C100.6534 (2)−0.27237 (17)−0.20994 (17)0.0337 (5)
C110.8922 (2)0.08967 (16)0.20040 (15)0.0278 (4)
C120.8946 (2)−0.01519 (16)0.20175 (15)0.0281 (4)
C130.9639 (2)−0.06631 (17)0.29523 (16)0.0346 (5)
H13A0.9681−0.13600.29590.042*
C141.0260 (2)−0.0142 (2)0.38647 (16)0.0405 (5)
H14A1.0703−0.04860.44840.049*
C151.0221 (2)0.0895 (2)0.38529 (17)0.0419 (6)
H15A1.06360.12490.44660.050*
C160.9568 (2)0.14064 (17)0.29350 (18)0.0365 (5)
H16A0.95590.21040.29370.044*
C170.8383 (2)0.14901 (14)0.10351 (17)0.0282 (4)
C180.7102 (2)0.19898 (15)0.04996 (16)0.0292 (4)
C190.6773 (2)0.25507 (18)−0.03716 (18)0.0369 (5)
H19A0.59200.2890−0.07270.044*
C200.7682 (3)0.26123 (18)−0.07140 (19)0.0412 (5)
H20A0.74460.2991−0.12900.049*
C210.8951 (2)0.21017 (18)−0.01881 (19)0.0400 (5)
H21A0.95730.2131−0.04120.048*
C220.9287 (3)0.15476 (17)0.06719 (19)0.0366 (5)
H22A1.01370.12040.10180.044*
C230.8187 (2)−0.07766 (15)0.10614 (16)0.0300 (4)
C240.5999 (2)0.18908 (16)0.07706 (17)0.0309 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.03431 (18)0.02951 (18)0.02666 (17)−0.00125 (10)0.01828 (13)−0.00287 (9)
O10.0386 (8)0.0330 (8)0.0287 (8)0.0015 (7)0.0138 (7)−0.0053 (6)
O20.0586 (12)0.0359 (10)0.0433 (10)0.0155 (8)0.0128 (9)−0.0077 (7)
O30.0446 (10)0.0630 (12)0.0467 (11)0.0160 (8)0.0313 (9)0.0260 (8)
O40.0328 (8)0.0494 (10)0.0328 (8)0.0021 (7)0.0193 (7)0.0047 (7)
N10.0321 (9)0.0371 (10)0.0286 (9)−0.0026 (8)0.0174 (8)−0.0026 (8)
N20.0323 (9)0.0339 (10)0.0325 (9)0.0008 (8)0.0168 (8)−0.0031 (8)
C10.0441 (13)0.0396 (13)0.0410 (13)−0.0049 (11)0.0247 (11)0.0004 (10)
C20.0523 (15)0.0506 (16)0.0521 (16)−0.0115 (13)0.0304 (13)0.0044 (12)
C30.0485 (15)0.075 (2)0.0423 (14)−0.0104 (14)0.0288 (12)0.0046 (13)
C40.0412 (13)0.0684 (17)0.0339 (12)−0.0086 (12)0.0233 (11)−0.0095 (12)
C50.0477 (15)0.0549 (17)0.0515 (16)−0.0021 (12)0.0317 (13)−0.0170 (12)
C60.0578 (17)0.0476 (16)0.074 (2)−0.0064 (13)0.0380 (16)−0.0293 (15)
C70.0522 (16)0.0322 (13)0.076 (2)−0.0053 (12)0.0327 (15)−0.0113 (12)
C80.0475 (14)0.0354 (13)0.0500 (15)−0.0028 (11)0.0259 (12)−0.0028 (11)
C90.0253 (10)0.0467 (13)0.0273 (11)−0.0003 (9)0.0138 (9)−0.0040 (9)
C100.0268 (10)0.0414 (13)0.0313 (11)−0.0001 (9)0.0144 (9)−0.0076 (9)
C110.0261 (9)0.0282 (10)0.0298 (10)0.0002 (8)0.0154 (8)−0.0003 (8)
C120.0282 (10)0.0304 (11)0.0269 (10)0.0008 (8)0.0154 (8)0.0001 (8)
C130.0383 (12)0.0330 (11)0.0337 (11)0.0039 (9)0.0199 (10)0.0056 (9)
C140.0416 (13)0.0515 (14)0.0261 (11)0.0053 (11)0.0166 (10)0.0062 (10)
C150.0418 (12)0.0521 (15)0.0258 (11)0.0020 (11)0.0139 (10)−0.0096 (10)
C160.0386 (12)0.0322 (11)0.0365 (12)0.0003 (9)0.0184 (10)−0.0055 (9)
C170.0328 (11)0.0243 (10)0.0302 (11)−0.0037 (8)0.0186 (9)−0.0015 (8)
C180.0345 (11)0.0242 (10)0.0320 (11)−0.0024 (9)0.0198 (9)0.0004 (8)
C190.0403 (12)0.0332 (12)0.0382 (12)0.0040 (10)0.0215 (10)0.0099 (10)
C200.0530 (14)0.0362 (12)0.0422 (13)−0.0049 (11)0.0305 (11)0.0083 (10)
C210.0462 (13)0.0398 (13)0.0487 (14)−0.0066 (11)0.0352 (12)0.0014 (11)
C220.0339 (12)0.0389 (13)0.0394 (13)−0.0010 (9)0.0211 (10)0.0007 (9)
C230.0357 (11)0.0280 (11)0.0294 (10)−0.0010 (9)0.0194 (9)−0.0010 (8)
C240.0346 (11)0.0257 (10)0.0360 (11)0.0013 (9)0.0211 (9)0.0030 (9)

Geometric parameters (Å, °)

Cu1—O11.9640 (15)C6—H6A0.9300
Cu1—O4i1.9725 (16)C7—C81.370 (4)
Cu1—N21.9814 (19)C7—H7A0.9300
Cu1—N11.9897 (19)C8—H8A0.9300
Cu1—O22.434 (2)C9—C101.479 (3)
Cu1—C232.519 (2)C11—C161.394 (3)
Cu1—O3i2.557 (2)C11—C121.399 (3)
Cu1—C24i2.580 (2)C11—C171.505 (3)
O1—C231.273 (2)C12—C131.399 (3)
O2—C231.233 (3)C12—C231.503 (3)
O3—C241.225 (3)C13—C141.381 (3)
O3—Cu1i2.5567 (19)C13—H13A0.9300
O4—C241.280 (3)C14—C151.383 (4)
O4—Cu1i1.9725 (16)C14—H14A0.9300
N1—C11.342 (3)C15—C161.380 (3)
N1—C91.350 (3)C15—H15A0.9300
N2—C81.331 (3)C16—H16A0.9300
N2—C101.351 (3)C17—C181.390 (3)
C1—C21.377 (3)C17—C221.399 (3)
C1—H1A0.9300C18—C191.405 (3)
C2—C31.372 (4)C18—C241.509 (3)
C2—H2A0.9300C19—C201.379 (3)
C3—C41.385 (4)C19—H19A0.9300
C3—H3A0.9300C20—C211.387 (3)
C4—C91.377 (3)C20—H20A0.9300
C4—H4A0.9300C21—C221.384 (3)
C5—C61.365 (4)C21—H21A0.9300
C5—C101.383 (3)C22—H22A0.9300
C5—H5A0.9300C24—Cu1i2.580 (2)
C6—C71.378 (5)
O1—Cu1—O4i93.92 (7)C6—C7—H7A120.8
O1—Cu1—N2162.77 (7)N2—C8—C7122.5 (3)
O4i—Cu1—N295.38 (8)N2—C8—H8A118.8
O1—Cu1—N194.56 (7)C7—C8—H8A118.8
O4i—Cu1—N1160.15 (7)N1—C9—C4121.3 (2)
N2—Cu1—N181.35 (8)N1—C9—C10114.4 (2)
O1—Cu1—O258.55 (6)C4—C9—C10124.3 (2)
O4i—Cu1—O296.94 (8)N2—C10—C5121.0 (2)
N2—Cu1—O2105.83 (7)N2—C10—C9114.12 (19)
N1—Cu1—O2102.80 (8)C5—C10—C9124.9 (2)
O1—Cu1—C2329.83 (6)C16—C11—C12118.49 (19)
O4i—Cu1—C2395.07 (7)C16—C11—C17118.75 (19)
N2—Cu1—C23134.42 (7)C12—C11—C17122.34 (18)
N1—Cu1—C23101.19 (7)C11—C12—C13119.90 (19)
O2—Cu1—C2328.76 (6)C11—C12—C23122.91 (18)
O1—Cu1—O3i106.45 (7)C13—C12—C23117.11 (19)
O4i—Cu1—O3i56.28 (6)C14—C13—C12120.5 (2)
N2—Cu1—O3i90.78 (7)C14—C13—H13A119.7
N1—Cu1—O3i104.04 (7)C12—C13—H13A119.7
O2—Cu1—O3i150.22 (7)C13—C14—C15119.7 (2)
C23—Cu1—O3i130.98 (7)C13—C14—H14A120.2
O1—Cu1—C24i99.04 (7)C15—C14—H14A120.2
O4i—Cu1—C24i28.92 (6)C16—C15—C14120.2 (2)
N2—Cu1—C24i96.11 (7)C16—C15—H15A119.9
N1—Cu1—C24i131.58 (7)C14—C15—H15A119.9
O2—Cu1—C24i123.91 (8)C15—C16—C11121.2 (2)
C23—Cu1—C24i113.37 (7)C15—C16—H16A119.4
O3i—Cu1—C24i27.59 (6)C11—C16—H16A119.4
C23—O1—Cu1100.02 (13)C18—C17—C22118.57 (19)
C23—O2—Cu179.48 (13)C18—C17—C11125.76 (19)
C24—O3—Cu1i77.28 (13)C22—C17—C11115.66 (19)
C24—O4—Cu1i102.92 (13)C17—C18—C19119.05 (19)
C1—N1—C9119.4 (2)C17—C18—C24122.42 (19)
C1—N1—Cu1125.93 (16)C19—C18—C24118.37 (19)
C9—N1—Cu1114.61 (15)C20—C19—C18121.8 (2)
C8—N2—C10119.0 (2)C20—C19—H19A119.1
C8—N2—Cu1125.93 (17)C18—C19—H19A119.1
C10—N2—Cu1115.06 (15)C19—C20—C21119.1 (2)
N1—C1—C2121.8 (2)C19—C20—H20A120.4
N1—C1—H1A119.1C21—C20—H20A120.4
C2—C1—H1A119.1C22—C21—C20119.6 (2)
C3—C2—C1119.0 (3)C22—C21—H21A120.2
C3—C2—H2A120.5C20—C21—H21A120.2
C1—C2—H2A120.5C21—C22—C17121.9 (2)
C2—C3—C4119.5 (2)C21—C22—H22A119.1
C2—C3—H3A120.2C17—C22—H22A119.1
C4—C3—H3A120.2O2—C23—O1121.8 (2)
C9—C4—C3119.0 (2)O2—C23—C12120.6 (2)
C9—C4—H4A120.5O1—C23—C12117.53 (18)
C3—C4—H4A120.5O2—C23—Cu171.76 (13)
C6—C5—C10119.1 (3)O1—C23—Cu150.14 (10)
C6—C5—H5A120.4C12—C23—Cu1165.85 (15)
C10—C5—H5A120.4O3—C24—O4122.5 (2)
C5—C6—C7119.8 (2)O3—C24—C18121.2 (2)
C5—C6—H6A120.1O4—C24—C18116.28 (18)
C7—C6—H6A120.1O3—C24—Cu1i75.13 (13)
C8—C7—C6118.5 (3)O4—C24—Cu1i48.16 (10)
C8—C7—H7A120.8C18—C24—Cu1i161.10 (15)

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1A···O10.932.583.081 (3)114
C4—H4A···O4ii0.932.593.378 (3)143
C5—H5A···O4ii0.932.513.304 (4)144
C6—H6A···O3iii0.932.253.162 (3)166
C16—H16A···O2iv0.932.483.192 (3)133
C19—H19A···O40.932.452.761 (3)100

Symmetry codes: (ii) −x+1, y−1/2, −z−1/2; (iii) x, −y−1/2, z−1/2; (iv) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2255).

References

  • Bu, X. H., Tong, M. L., Chang, H. C., Kitagawa, S. & Batten, S. R. (2004). Angew. Chem. Int. Ed.43, 192–195. [PubMed]
  • He, H.-Y., Zhou, Y.-L. & Gao, J. (2007). Acta Cryst. E63, m2007.
  • He, H.-Y. & Zhu, L.-G. (2003). Acta Cryst. E59, o174–o176.
  • Huang, X. C., Zhang, J. P., Lin, Y. Y., Yu, X. L. & Chen, X. M. (2004). Chem. Commun. pp. 1100–1101. [PubMed]
  • Long, L. S., Chen, X. M., Tong, M. L., Sun, Z. G., Ren, Y. P., Huang, R. B. & Zheng, L. S. (2001). J. Chem. Soc. Dalton Trans. pp. 2888–2890.
  • Ma, B. Q., Sun, H. L. & Gao, S. (2003). Chem. Commun. pp. 2164–2165. [PubMed]
  • Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed.43, 1466–1496. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1994). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714. [PubMed]
  • Yang, S. Y., Long, L. S., Jiang, Y. B., Huang, R. B. & Zheng, L. S. (2002). Chem. Mater.14, 3229–3230.
  • Zhang, J. P., Zheng, S. L., Huang, X. C. & Chen, X. M. (2004). Angew. Chem. Int. Ed.43, 206–209. [PubMed]
  • Zhu, H. L., Tong, Y. X. & Chen, X. M. (2001). Transition Met. Chem.26, 528–531.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography