PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1184–m1185.
Published online 2008 August 20. doi:  10.1107/S160053680802357X
PMCID: PMC2960658

Aqua­(hexa­methyl­enetetra­mine-κN)bis­(methanol-κO)bis­(thio­cyanato-κN)cobalt(II)

Abstract

In the title complex, [Co(NCS)2(C6H12N4)(CH4O)2(H2O)], the six-coordinated Co atom has a slightly distorted octa­hedral geometry. The molecules are linked by intermolecular O—H(...)S and O—H(...)N hydrogen bonds, forming a three- dimensional crystal structure. Intramolecular C—H(...)N and C—H(...)O hydrogen bonds are also present.

Related literature

For information on the self-assembly of transition-metal complexes, see: Guo et al. (2002 [triangle]); Kumar et al. (2007 [triangle]); Venkateswaran et al. (2007 [triangle]); Chi et al. (2008 [triangle]). For complexes including hexa­methyl­enetetra­mine (hmt) as ligand, see: Liu et al. (2006 [triangle]); Zhang et al. (1999 [triangle]); Meng et al. (2001 [triangle]); Li et al. (2002 [triangle], 2007 [triangle]); Banerjee et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1184-scheme1.jpg

Experimental

Crystal data

  • [Co(NCS)2(C6H12N4)(CH4O)2(H2O)]
  • M r = 397.39
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1184-efi1.jpg
  • a = 14.1128 (8) Å
  • b = 15.3684 (9) Å
  • c = 15.9839 (9) Å
  • V = 3466.8 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.25 mm−1
  • T = 296 (2) K
  • 0.30 × 0.30 × 0.25 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.691, T max = 0.730
  • 20785 measured reflections
  • 4287 independent reflections
  • 3528 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.075
  • S = 1.04
  • 4287 reflections
  • 217 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.64 e Å−3
  • Δρmin = −0.61 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680802357X/bh2177sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802357X/bh2177Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful for financial support from the Natural Science Foundation of Henan Province and the Education Department of Henan Province.

supplementary crystallographic information

Comment

Much interest at present is focused on the deliberate construction of transition metal ions and organic molecules by self-assembly of the component metal complexes. These solid materials are attractive to chemists not only for the variety of topologies and intriguing frameworks, but also for their interesting properties either by strong metal-ligand bonding or by weaker bonding forces such as hydrogen bonding and π—π interactions (Guo et al., 2002; Kumar et al., 2007; Venkateswaran et al., 2007; Chi et al., 2008). Among the ligands, hexamethylenetetramine (hmt), as a potential tetradentate ligand or hydrogen bonds acceptor, seems quite suitable in self-assembly systems. Several groups have reported that Co(II), Cd(II), Mn(II) or Ni(II) complexes with hmt and SCN - as ligands form two-dimensional or three-dimensional networks (Liu et al., 2006; Zhang et al., 1999; Meng et al., 2001; Li et al., 2002; Banerjee et al., 2007; Li et al., 2007).

Herein, we present a new hmt complex, (I), based on CoII, with SCN - as ligand (Fig. 1). The title complex, which contains one cobalt center, one hmt, two NCS-, two coordinated methanol molecules and one coordinated water molecule, forms a mononuclear complex. The CoII ion is surrounded by three N atoms and three O atoms (two N atoms from two isothiocyanates, one N atom from hmt, one O atom from coordinated water molecule and two O atoms from two methanol molecules) to attain a distorted octahedral coordination geometry. Moreover, the O atoms of both methanol molecules are each mutually trans to each other. Intramolecular C—H···N and C—H···O hydrogen bonds (Table 2) are important factors in the stabilization of the molecule.

In the crystal structure, molecules interact with each other, forming a three-dimensional supramolecular network through multiform intermolecular hydrogen bonds (Fig. 2 and Table 2). The O2 and O1w atoms form two O—H···N hydrogen bonds with N4 and N6 atoms of the adjacent hmt ligand, respectively. In addition, O1w—H···S2 hydrogen bond is also found in the solid state.

Experimental

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. Hexamethylenetetramine (0.50 mmol, 0.07 g), KSCN (1 mmol, 0.10 g) and Co(NO3)2.6H2O (0.50 mmol, 0.15 g) were mixed in methanol (25 ml).The resulting purple solution was left for few weeks at room temperature to afford purple crystals (yield 65%). Anal. Calcd. for [Co(hmt)(SCN)2(CH3OH)2(H2O)]: C 30.23, H 5.58, N 21.15%. Found: C 30.21, H 5.59, N 21.16%. IR (KBr pellet, cm -1): 3398 (m), 2951 (m), 2877 (m), 2079 (vs), 1666 (m), 1462 (s), 1379 (s), 1241 (s), 1010 (s), 814 (m), 687 (s), 516 (m), 480 (m).

Refinement

H atoms bonded to O atoms of CH3OH and H2O molecules were found in a difference map and refined freely. Other H atoms (hmt ligand) were generated geometrically and refined using a riding model: C—H = 0.97 Å, Uiso(H) = 1.2 Ueq(carrier C).

Figures

Fig. 1.
The molecular structure of the title complex, with displacement ellipsoids drawn at the 50% probability level. The hydrogen atoms are omitted for clarity.
Fig. 2.
Perspective view of the three-dimensional network, showing the intermolecular hydrogen bonds (dashed solid lines) interactions.

Crystal data

[Co(NCS)2(C6H12N4)(CH4O)2(H2O)]F000 = 1656
Mr = 397.39Dx = 1.523 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7990 reflections
a = 14.1128 (8) Åθ = 2.3–28.3º
b = 15.3684 (9) ŵ = 1.25 mm1
c = 15.9839 (9) ÅT = 296 (2) K
V = 3466.8 (3) Å3Block, purple
Z = 80.30 × 0.30 × 0.25 mm

Data collection

Bruker APEXII diffractometer4287 independent reflections
Radiation source: sealed tube3528 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.022
T = 296(2) Kθmax = 28.3º
[var phi] and ω scansθmin = 2.3º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −14→18
Tmin = 0.691, Tmax = 0.730k = −19→20
20785 measured reflectionsl = −18→21

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075  w = 1/[σ2(Fo2) + (0.0359P)2 + 1.3724P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4287 reflectionsΔρmax = 0.64 e Å3
217 parametersΔρmin = −0.61 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.553065 (15)1.038335 (14)0.283547 (14)0.02795 (7)
N10.65439 (11)0.97495 (10)0.35331 (10)0.0373 (3)
C10.71280 (12)0.94096 (11)0.39145 (11)0.0309 (3)
S10.79561 (4)0.89311 (4)0.44512 (4)0.05772 (17)
N20.45742 (11)1.10745 (11)0.21469 (10)0.0412 (4)
C20.40515 (12)1.14790 (11)0.17538 (10)0.0318 (3)
S20.33147 (4)1.20788 (3)0.12175 (3)0.04690 (13)
N30.43978 (9)0.94296 (9)0.32720 (8)0.0262 (3)
N40.27067 (9)0.91344 (9)0.34713 (9)0.0310 (3)
N50.38399 (10)0.86701 (9)0.45350 (9)0.0329 (3)
N60.37919 (10)0.79376 (9)0.31828 (9)0.0320 (3)
C30.34122 (11)0.97472 (10)0.31390 (11)0.0295 (3)
H3A0.33361.03060.34120.035*
H3B0.33040.98290.25450.035*
C40.45227 (12)0.92901 (11)0.41871 (10)0.0311 (3)
H4A0.51590.90780.42910.037*
H4B0.44550.98430.44730.037*
C50.44845 (11)0.85686 (11)0.28545 (10)0.0301 (3)
H5A0.43870.86390.22580.036*
H5B0.51200.83440.29390.036*
C60.28784 (12)0.90063 (12)0.43761 (10)0.0359 (4)
H6A0.27980.95560.46650.043*
H6B0.24160.86000.45970.043*
C70.28332 (12)0.82913 (11)0.30472 (11)0.0341 (4)
H7A0.27260.83640.24520.041*
H7B0.23680.78810.32570.041*
C80.39459 (13)0.78357 (11)0.40908 (11)0.0355 (4)
H8A0.34930.74200.43120.043*
H8B0.45770.76070.41880.043*
O10.52358 (11)1.12213 (8)0.39015 (8)0.0416 (3)
H10.5632 (16)1.1230 (15)0.4256 (16)0.054 (7)*
C90.4697 (2)1.19973 (17)0.39250 (16)0.0775 (9)
H9A0.43011.19960.44130.116*
H9D0.43081.20330.34330.116*
H9B0.51161.24890.39450.116*
O20.58559 (9)0.95999 (9)0.17962 (8)0.0368 (3)
H20.6396 (16)0.9493 (13)0.1762 (13)0.039 (6)*
C100.54971 (15)0.97087 (17)0.09672 (13)0.0556 (6)
H10D0.57000.92300.06250.083*
H10A0.57331.02430.07370.083*
H10B0.48170.97260.09830.083*
O1W0.66088 (11)1.12763 (9)0.24788 (10)0.0439 (3)
H1WA0.6425 (17)1.1713 (16)0.2319 (16)0.054 (7)*
H1WB0.7014 (18)1.1426 (16)0.2873 (16)0.063 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.02528 (12)0.02913 (12)0.02945 (12)0.00166 (8)−0.00442 (8)0.00671 (8)
N10.0328 (8)0.0382 (8)0.0408 (8)0.0019 (6)−0.0058 (6)0.0072 (6)
C10.0299 (8)0.0296 (8)0.0333 (8)−0.0020 (6)−0.0040 (7)−0.0008 (6)
S10.0564 (3)0.0461 (3)0.0707 (4)0.0114 (2)−0.0366 (3)−0.0015 (3)
N20.0362 (8)0.0436 (9)0.0437 (9)0.0042 (7)−0.0059 (7)0.0111 (7)
C20.0306 (8)0.0336 (8)0.0314 (8)−0.0002 (7)−0.0020 (7)0.0022 (7)
S20.0437 (3)0.0503 (3)0.0468 (3)0.0126 (2)−0.0123 (2)0.0089 (2)
N30.0253 (6)0.0283 (7)0.0251 (6)−0.0001 (5)−0.0025 (5)0.0014 (5)
N40.0265 (7)0.0330 (7)0.0336 (7)0.0002 (5)0.0006 (6)−0.0010 (6)
N50.0338 (7)0.0373 (8)0.0277 (7)−0.0022 (6)0.0008 (6)0.0043 (6)
N60.0356 (7)0.0268 (7)0.0336 (7)−0.0008 (6)0.0021 (6)−0.0015 (6)
C30.0284 (8)0.0286 (8)0.0314 (8)0.0024 (6)−0.0020 (6)0.0011 (6)
C40.0327 (9)0.0363 (9)0.0243 (7)−0.0034 (7)−0.0044 (6)0.0020 (6)
C50.0307 (8)0.0299 (8)0.0297 (8)0.0017 (6)0.0031 (6)−0.0018 (6)
C60.0335 (9)0.0435 (10)0.0308 (8)0.0009 (7)0.0065 (7)−0.0010 (7)
C70.0314 (9)0.0346 (9)0.0364 (9)−0.0058 (7)−0.0025 (7)−0.0032 (7)
C80.0379 (9)0.0310 (8)0.0377 (9)−0.0003 (7)0.0013 (7)0.0075 (7)
O10.0519 (8)0.0371 (7)0.0358 (7)0.0080 (6)−0.0109 (6)−0.0021 (5)
C90.116 (2)0.0597 (15)0.0565 (15)0.0428 (15)−0.0207 (15)−0.0112 (12)
O20.0253 (6)0.0531 (8)0.0319 (6)0.0018 (5)−0.0003 (5)0.0017 (5)
C100.0418 (12)0.0907 (18)0.0343 (10)0.0045 (11)−0.0045 (8)0.0006 (10)
O1W0.0411 (8)0.0344 (7)0.0562 (9)−0.0044 (6)−0.0076 (7)0.0132 (7)

Geometric parameters (Å, °)

Co1—N22.0400 (15)C3—H3B0.9700
Co1—N12.0585 (15)C4—H4A0.9700
Co1—O22.1024 (13)C4—H4B0.9700
Co1—O1W2.1268 (14)C5—H5A0.9700
Co1—O12.1760 (13)C5—H5B0.9700
Co1—N32.2785 (13)C6—H6A0.9700
N1—C11.151 (2)C6—H6B0.9700
C1—S11.6256 (17)C7—H7A0.9700
N2—C21.151 (2)C7—H7B0.9700
C2—S21.6327 (17)C8—H8A0.9700
N3—C51.487 (2)C8—H8B0.9700
N3—C41.489 (2)O1—C91.415 (2)
N3—C31.489 (2)O1—H10.80 (2)
N4—C31.470 (2)C9—H9A0.9600
N4—C71.473 (2)C9—H9D0.9600
N4—C61.480 (2)C9—H9B0.9600
N5—C41.465 (2)O2—C101.428 (2)
N5—C81.473 (2)O2—H20.78 (2)
N5—C61.474 (2)C10—H10D0.9600
N6—C51.473 (2)C10—H10A0.9600
N6—C71.474 (2)C10—H10B0.9600
N6—C81.476 (2)O1W—H1WA0.76 (3)
C3—H3A0.9700O1W—H1WB0.88 (3)
N2—Co1—N1176.69 (6)N6—C5—N3111.79 (12)
N2—Co1—O290.94 (6)N6—C5—H5A109.3
N1—Co1—O290.31 (6)N3—C5—H5A109.3
N2—Co1—O1W89.59 (6)N6—C5—H5B109.3
N1—Co1—O1W87.34 (6)N3—C5—H5B109.3
O2—Co1—O1W90.09 (6)H5A—C5—H5B107.9
N2—Co1—O189.30 (6)N5—C6—N4111.46 (13)
N1—Co1—O189.35 (6)N5—C6—H6A109.3
O2—Co1—O1178.06 (6)N4—C6—H6A109.3
O1W—Co1—O187.99 (6)N5—C6—H6B109.3
N2—Co1—N392.06 (6)N4—C6—H6B109.3
N1—Co1—N390.98 (5)H6A—C6—H6B108.0
O2—Co1—N391.53 (5)N4—C7—N6111.58 (13)
O1W—Co1—N3177.67 (6)N4—C7—H7A109.3
O1—Co1—N390.39 (5)N6—C7—H7A109.3
C1—N1—Co1178.20 (15)N4—C7—H7B109.3
N1—C1—S1179.8 (2)N6—C7—H7B109.3
C2—N2—Co1178.33 (16)H7A—C7—H7B108.0
N2—C2—S2178.14 (17)N5—C8—N6111.51 (13)
C5—N3—C4107.64 (13)N5—C8—H8A109.3
C5—N3—C3107.72 (12)N6—C8—H8A109.3
C4—N3—C3107.34 (12)N5—C8—H8B109.3
C5—N3—Co1112.16 (9)N6—C8—H8B109.3
C4—N3—Co1108.08 (9)H8A—C8—H8B108.0
C3—N3—Co1113.63 (9)C9—O1—Co1128.49 (13)
C3—N4—C7108.37 (13)C9—O1—H1110.2 (17)
C3—N4—C6109.12 (13)Co1—O1—H1115.6 (17)
C7—N4—C6108.23 (13)O1—C9—H9A109.5
C4—N5—C8108.45 (13)O1—C9—H9D109.5
C4—N5—C6108.18 (13)H9A—C9—H9D109.5
C8—N5—C6108.39 (14)O1—C9—H9B109.5
C5—N6—C7108.29 (13)H9A—C9—H9B109.5
C5—N6—C8108.81 (13)H9D—C9—H9B109.5
C7—N6—C8108.60 (13)C10—O2—Co1126.06 (13)
N4—C3—N3111.79 (12)C10—O2—H2107.8 (16)
N4—C3—H3A109.3Co1—O2—H2112.9 (16)
N3—C3—H3A109.3O2—C10—H10D109.5
N4—C3—H3B109.3O2—C10—H10A109.5
N3—C3—H3B109.3H10D—C10—H10A109.5
H3A—C3—H3B107.9O2—C10—H10B109.5
N5—C4—N3112.87 (13)H10D—C10—H10B109.5
N5—C4—H4A109.0H10A—C10—H10B109.5
N3—C4—H4A109.0Co1—O1W—H1WA114.4 (19)
N5—C4—H4B109.0Co1—O1W—H1WB116.1 (16)
N3—C4—H4B109.0H1WA—O1W—H1WB103 (2)
H4A—C4—H4B107.8

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4A···N10.972.523.119 (2)120
C4—H4B···O10.972.563.167 (2)121
C9—H9D···N20.962.563.181 (3)123
O1—H1···N5i0.80 (2)2.08 (3)2.824 (2)156 (2)
O1W—H1WA···N6ii0.76 (2)2.07 (2)2.821 (2)168 (3)
O2—H2···N4iii0.78 (2)1.97 (2)2.7417 (18)172 (2)
O1W—H1WB···S2iii0.88 (3)2.55 (3)3.4146 (16)168 (2)

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, y+1/2, −z+1/2; (iii) x+1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2177).

References

  • Banerjee, S., Choudhury, A. R., Guru Row, T. N., Chaudhuri, S. & Ghosh, A. (2007). Polyhedron, 26, 24–32.
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chi, Y.-N., Cui, F.-Y., Xu, Y.-Q. & Hu, C.-W. (2008). J. Mol. Struct.875, 42–49.
  • Guo, D., Duan, C.-Y., Fang, C.-J. & Meng, Q.-J. (2002). Dalton Trans. pp. 834–836.
  • Kumar, D. K., Das, A. & Dastidar, P. (2007). Cryst. Growth Des.7, 205–207.
  • Li, X.-L., Niu, D.-Z. & Lu, Z.-S. (2007). Acta Cryst. E63, m2478.
  • Li, G., Zhu, Y., Li, L. K., Hou, H. W., Fan, Y. & Du, C. X. (2002). Chin. J. Inorg. Chem.18, 537–540.
  • Liu, Q., Xu, Z. & Yu, K. B. (2006). Chin. J. Inorg. Chem.22, 1095–1098.
  • Meng, X. R., Li, L., Song, Y. L., Zhu, Y., Du, C. X., Fan, Y. T. & Hou, H. W. (2001). Acta Chim. Sinica, 59, 1277–1282.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Venkateswaran, R., Balakrishna, M. S., Mobin, S. M. & Tuononen, H. M. (2007). Inorg. Chem.46, 6535–6541. [PubMed]
  • Zhang, Y., Li, J., Xu, H., Hou, H., Nishiura, M. & Imamoto, T. (1999). J. Mol. Struct.510, 191–196.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography