PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1743.
Published online 2008 August 13. doi:  10.1107/S1600536808025142
PMCID: PMC2960655

N-Phenyl­piperidine-1-carbothio­amide

Abstract

The title compound, C12H16N2S, was prepared by the reaction of with phenyl isothio­cyanate and piperidine. In the crystal structure, the mol­ecule exhibits inter­molecular N—H(...)S hydrogen bonds and weak intra­molecular C—H(...)S and C—H(...)N hydrogen-bonding inter­actions.

Related literature

For related literature, see: Casas et al. (2002 [triangle]); Cowley et al. (2002 [triangle]); Toshiaki et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1743-scheme1.jpg

Experimental

Crystal data

  • C12H16N2S
  • M r = 220.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1743-efi1.jpg
  • a = 11.661 (2) Å
  • b = 9.5220 (19) Å
  • c = 10.989 (2) Å
  • β = 102.15 (3)°
  • V = 1192.8 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 293 (2) K
  • 0.25 × 0.20 × 0.18 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 2681 measured reflections
  • 2547 independent reflections
  • 1972 reflections with I > 2σ(I)
  • R int = 0.009
  • 3 standard reflections every 100 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.123
  • S = 1.02
  • 2547 reflections
  • 149 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808025142/at2604sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025142/at2604Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Thioamide have received considerable attention in the literature. They are attractive from several points of view in application (Toshiaki et al., 2003). As part of our search for new thioamide compounds we synthesized the title compound (I), and describe its structure here.

The C6—S1 bond length of 1.7056 (17)Å is comparable with C—S bond [1.688 (2) Å] reported (Cowley et al., 2002). The distance of N1—C6 [1.349 (2) Å] is similar to the distance of reported [1.349 (1) Å] (Casas et al., 2002). The crystal strucure is stabilized by an intermolecular N—H···S hydrogen bond, and weak intramolecular C—H···S and C—H···N hydrogen bonding interactions (Table 1). Fig. 2 shows the intermolecular N—H···S hydrogen bonds between the neighbour molecules in the unit cell.

Experimental

A mixture of the phenyl isothiocyanate (0.1 mol), and piperidine (0.1 mol) was stirred in refluxing ethanol (20 mL) for 4 h to afford the title compound (0.086 mol, yield 86%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93 - 0.97 Å, and with Uiso=1.2 or 1.5Ueq.

Figures

Fig. 1.
The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
A view of the intermolecular N—H···S hydrogen bonds between the neighbour molecules in the unit cell.

Crystal data

C12H16N2SF000 = 472
Mr = 220.33Dx = 1.227 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.661 (2) Åθ = 1.8–27.0º
b = 9.5220 (19) ŵ = 0.24 mm1
c = 10.989 (2) ÅT = 293 (2) K
β = 102.15 (3)ºBlock, colourless
V = 1192.8 (4) Å30.25 × 0.20 × 0.18 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.009
Radiation source: fine-focus sealed tubeθmax = 27.0º
Monochromator: graphiteθmin = 1.8º
T = 293(2) Kh = −13→13
ω scansk = −11→0
Absorption correction: nonel = 0→13
2681 measured reflections3 standard reflections
2547 independent reflections every 100 reflections
1972 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040  w = 1/[σ2(Fo2) + (0.0738P)2 + 0.2418P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.26 e Å3
2547 reflectionsΔρmin = −0.38 e Å3
149 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.129 (8)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.48254 (4)0.19137 (5)0.42566 (4)0.04595 (19)
N10.33547 (12)0.37786 (15)0.29140 (15)0.0441 (4)
N20.53031 (12)0.41101 (18)0.29001 (15)0.0465 (4)
C10.23443 (15)0.2923 (2)0.3048 (2)0.0507 (5)
H1A0.18780.34310.35370.061*
H1B0.26150.20600.34840.061*
C20.15982 (19)0.2580 (2)0.1783 (2)0.0655 (6)
H2B0.09000.20830.18900.079*
H2C0.20340.19660.13410.079*
C30.1237 (2)0.3906 (2)0.1007 (3)0.0701 (7)
H3A0.08370.36420.01730.084*
H3B0.06960.44500.13770.084*
C40.23033 (19)0.4800 (2)0.09364 (19)0.0558 (5)
H4A0.27940.43080.04650.067*
H4B0.20510.56760.05120.067*
C50.29967 (16)0.51043 (19)0.22297 (19)0.0449 (4)
C60.44703 (14)0.33344 (17)0.33069 (15)0.0362 (4)
C70.65404 (14)0.39270 (17)0.32415 (16)0.0388 (4)
C80.71647 (15)0.38347 (18)0.23028 (18)0.0439 (4)
H8A0.67720.38410.14730.053*
C90.83783 (16)0.3733 (2)0.2604 (2)0.0522 (5)
H9A0.87970.36730.19730.063*
C100.89689 (16)0.3721 (2)0.3832 (2)0.0538 (5)
H10A0.97820.36460.40300.065*
C110.83420 (16)0.3822 (2)0.4765 (2)0.0533 (5)
H11A0.87370.38140.55940.064*
C120.71314 (16)0.3935 (2)0.44777 (18)0.0481 (4)
H12A0.67160.40150.51100.058*
H5A0.3633 (19)0.566 (2)0.220 (2)0.055 (6)*
H5B0.2457 (19)0.561 (2)0.267 (2)0.056 (6)*
H20.5075 (17)0.463 (2)0.230 (2)0.051 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0424 (3)0.0424 (3)0.0520 (3)0.00420 (18)0.00770 (19)0.01026 (19)
N10.0343 (7)0.0404 (8)0.0576 (9)−0.0006 (6)0.0095 (6)0.0122 (7)
N20.0336 (7)0.0551 (9)0.0494 (9)−0.0004 (7)0.0058 (6)0.0162 (7)
C10.0344 (9)0.0481 (10)0.0717 (13)0.0002 (7)0.0158 (8)0.0176 (9)
C20.0502 (11)0.0419 (11)0.0962 (17)−0.0057 (9)−0.0033 (11)0.0036 (11)
C30.0613 (13)0.0556 (13)0.0792 (16)−0.0016 (10)−0.0179 (11)0.0042 (11)
C40.0655 (12)0.0503 (11)0.0525 (11)0.0128 (9)0.0142 (9)0.0097 (9)
C50.0370 (8)0.0355 (9)0.0631 (12)0.0021 (7)0.0124 (8)0.0092 (8)
C60.0351 (8)0.0369 (8)0.0367 (8)−0.0014 (6)0.0078 (6)−0.0016 (6)
C70.0335 (8)0.0343 (8)0.0475 (9)−0.0029 (6)0.0059 (7)0.0017 (7)
C80.0418 (9)0.0420 (10)0.0474 (10)−0.0041 (7)0.0081 (7)0.0007 (7)
C90.0434 (10)0.0475 (11)0.0706 (13)−0.0022 (8)0.0233 (9)−0.0035 (9)
C100.0320 (9)0.0451 (10)0.0814 (14)−0.0008 (7)0.0052 (9)0.0032 (9)
C110.0435 (10)0.0539 (12)0.0556 (11)−0.0051 (8)−0.0054 (8)0.0008 (9)
C120.0428 (9)0.0536 (11)0.0466 (10)−0.0036 (8)0.0066 (8)−0.0027 (8)

Geometric parameters (Å, °)

S1—C61.7056 (17)C4—C51.508 (3)
N1—C61.349 (2)C4—H4A0.9700
N1—C11.465 (2)C4—H4B0.9700
N1—C51.484 (2)C5—H5A0.92 (2)
N2—C61.368 (2)C5—H5B0.99 (2)
N2—C71.423 (2)C7—C81.385 (3)
N2—H20.82 (2)C7—C121.388 (2)
C1—C21.512 (3)C8—C91.387 (3)
C1—H1A0.9700C8—H8A0.9300
C1—H1B0.9700C9—C101.380 (3)
C2—C31.533 (3)C9—H9A0.9300
C2—H2B0.9700C10—C111.383 (3)
C2—H2C0.9700C10—H10A0.9300
C3—C41.522 (3)C11—C121.384 (3)
C3—H3A0.9700C11—H11A0.9300
C3—H3B0.9700C12—H12A0.9300
C6—N1—C1122.35 (14)H4A—C4—H4B108.2
C6—N1—C5125.33 (14)N1—C5—C4110.63 (16)
C1—N1—C5112.18 (14)N1—C5—H5A111.5 (13)
C6—N2—C7126.72 (15)C4—C5—H5A110.9 (13)
C6—N2—H2117.1 (14)N1—C5—H5B107.9 (13)
C7—N2—H2115.0 (14)C4—C5—H5B106.3 (12)
N1—C1—C2110.30 (17)H5A—C5—H5B109.3 (18)
N1—C1—H1A109.6N1—C6—N2115.41 (15)
C2—C1—H1A109.6N1—C6—S1122.54 (12)
N1—C1—H1B109.6N2—C6—S1122.05 (12)
C2—C1—H1B109.6C8—C7—C12119.93 (16)
H1A—C1—H1B108.1C8—C7—N2118.31 (16)
C1—C2—C3111.80 (18)C12—C7—N2121.62 (16)
C1—C2—H2B109.3C7—C8—C9119.78 (18)
C3—C2—H2B109.3C7—C8—H8A120.1
C1—C2—H2C109.3C9—C8—H8A120.1
C3—C2—H2C109.3C10—C9—C8120.50 (19)
H2B—C2—H2C107.9C10—C9—H9A119.7
C4—C3—C2110.95 (18)C8—C9—H9A119.7
C4—C3—H3A109.4C9—C10—C11119.48 (17)
C2—C3—H3A109.4C9—C10—H10A120.3
C4—C3—H3B109.4C11—C10—H10A120.3
C2—C3—H3B109.4C10—C11—C12120.59 (18)
H3A—C3—H3B108.0C10—C11—H11A119.7
C5—C4—C3109.95 (18)C12—C11—H11A119.7
C5—C4—H4A109.7C11—C12—C7119.70 (18)
C3—C4—H4A109.7C11—C12—H12A120.1
C5—C4—H4B109.7C7—C12—H12A120.1
C3—C4—H4B109.7
C6—N1—C1—C2−117.8 (2)C7—N2—C6—N1175.49 (17)
C5—N1—C1—C258.1 (2)C7—N2—C6—S1−3.9 (3)
N1—C1—C2—C3−54.1 (2)C6—N2—C7—C8129.22 (19)
C1—C2—C3—C452.7 (3)C6—N2—C7—C12−55.1 (3)
C2—C3—C4—C5−53.8 (3)C12—C7—C8—C90.8 (3)
C6—N1—C5—C4115.4 (2)N2—C7—C8—C9176.49 (16)
C1—N1—C5—C4−60.4 (2)C7—C8—C9—C100.1 (3)
C3—C4—C5—N157.2 (2)C8—C9—C10—C11−0.5 (3)
C1—N1—C6—N2167.41 (17)C9—C10—C11—C120.0 (3)
C5—N1—C6—N2−8.0 (3)C10—C11—C12—C70.9 (3)
C1—N1—C6—S1−13.2 (2)C8—C7—C12—C11−1.3 (3)
C5—N1—C6—S1171.48 (14)N2—C7—C12—C11−176.82 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.82 (2)2.78 (2)3.5520 (19)156.1 (18)
C1—H1B···S10.972.543.073 (2)114
C5—H5A···N20.92 (2)2.44 (2)2.800 (2)103.8 (14)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2604).

References

  • Casas, J. S., Castano, M. V. & Castellano, E. E. (2002). Inorg. Chem 41, 1550–1557. [PubMed]
  • Cowley, A. R., Dilworth, J. R. & Dorinelly, P. S. (2002). J. Am. Chem. Soc.124, 5270–5271. [PubMed]
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Toshiaki, M., Hideo, A. & Yoshiharu, Y. (2003). J. Org. Chem 68, 8514–8519. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography