PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1710.
Published online 2008 August 6. doi:  10.1107/S1600536808024744
PMCID: PMC2960654

2,4-Bis(4-fluoro­phen­yl)-3-aza­bicyclo­[3.3.1]nonan-9-one

Abstract

In the title compound, C20H19F2NO, a crystallographic mirror plane bis­ects the mol­ecule, passing through the N, O and two C atoms of the central ring system. The mol­ecule exists in a twin-chair conformation with equatorial dispositions of the 4-fluoro­phenyl groups on both sides of the secondary amino groups; the dihedral angle between the aromatic ring planes is 28.67 (3)°.

Related literature

For chemical background, see: Buxton & Roberts (1996 [triangle]); Evans & Seddon (1997 [triangle]); Ramachandran et al. (2007 [triangle]). For ring puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1710-scheme1.jpg

Experimental

Crystal data

  • C20H19F2NO
  • M r = 327.36
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1710-efi1.jpg
  • a = 7.6153 (3) Å
  • b = 21.1392 (9) Å
  • c = 10.0878 (4) Å
  • V = 1623.95 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 298 (2) K
  • 0.35 × 0.32 × 0.30 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.967, T max = 0.971
  • 11360 measured reflections
  • 2064 independent reflections
  • 1596 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.141
  • S = 0.91
  • 2064 reflections
  • 118 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97..

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808024744/hb2763sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024744/hb2763Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by the second stage of the BK 21 program and Pukyong National University under the 2008 Postdoc program.

supplementary crystallographic information

Comment

Fluorine substituted organic compounds are very impotant due to the significance of C—F bonds in some bioorganic systems (e.g. Evans & Seddon, 1997). The intermolecular and intramolecular hydrogen bonds involving fluorine atom have attracted much attention in various aspects (e.g. Ramachandran et al., 2007). Moreover, the biological activities mainly depend on the stereochemistry of the synthesized compound (e.g. Buxton & Roberts, 1996). Hence, realising the importance of the investigation of the conformation, stereochemistry and the nature of bondings in the synthesized title fluorine substituted heterocycle, (I), we have carried out single-crystal X-ray diffraction studies.

An analysis of torsion angles, asymmetry parameters and least-squares plane calculation shows that the piperidine ring adopts a near ideal chair conformation with the deviation of ring atoms N1 and C5 from the C1/C1i/C2/C2i (i = x, 1/2-y, z) plane by -0.670 (3)Å and 0.693 (3)Å respectively, QT = 0.6064 (13) Å. The cyclohexane ring deviate from the ideal chair conformation by the deviation of ring atoms C4 and C5 from the C2/C2i/C3/C3i plane by 0.522 (4)Å and 0.734 (3)Å respectively, QT = 0.5681 (14)Å (Cremer & Pople, 1975).

Compound (I) has a crystallographic mirror plane, which bisects the molecule passing through N1, C4, C5 and O1 of the central ring (Fig. 1) and exists in twin-chair conformation with equatorial orientations of the para fluoro phenyl groups on the heterocycle with the torsion angle of C5—C2—C1—C6 is 178.41 (6)°. The aryl groups are orientated at an angle of 28.67 (3)° to each other.

Experimental

A mixture of cyclohexanone (0.05 mol) and para fluorobenzaldehyde (0.1 mol) was added to a warm solution of ammonium acetate (0.075 mol) in 50 ml of absolute ethanol. The mixture was very gently warmed on a hot plate till the yellow color formed during the mixing of the reactants and allowed to stir till the formation of the product. Thus, the formed azabicyclononane was separated by filtration and washed with a 1:5 v/v ethanol-ether mixture till the solid became colorless. Then, recrystallization of the compound from ethanol afforded colorless blocks of (I).

Refinement

The nitrogen H atom was located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically (C—H = 0.93-0.97Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) with non-hydrogen atoms represented as 30% probability ellipsoids.

Crystal data

C20H19F2NOF(000) = 688
Mr = 327.36Dx = 1.339 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 4451 reflections
a = 7.6153 (3) Åθ = 3.4–28.0°
b = 21.1392 (9) ŵ = 0.10 mm1
c = 10.0878 (4) ÅT = 298 K
V = 1623.95 (11) Å3Block, colourless
Z = 40.35 × 0.32 × 0.30 mm

Data collection

Bruker APEXII CCD diffractometer2064 independent reflections
Radiation source: fine-focus sealed tube1596 reflections with I > 2σ(I)
graphiteRint = 0.020
ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −8→10
Tmin = 0.967, Tmax = 0.971k = −28→28
11360 measured reflectionsl = −13→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 0.91w = 1/[σ2(Fo2) + (0.0897P)2 + 0.3733P] where P = (Fo2 + 2Fc2)/3
2064 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.92315 (17)0.30735 (5)0.39201 (12)0.0391 (3)
H10.88390.30550.29960.047*
C20.75726 (16)0.30901 (5)0.48153 (14)0.0421 (3)
H20.68640.34600.45760.051*
C30.79266 (19)0.31054 (6)0.63140 (13)0.0473 (3)
H3A0.87010.34580.65080.057*
H3B0.68270.31810.67730.057*
C40.8751 (3)0.25000.68562 (18)0.0492 (4)
H4A0.99930.25000.66440.059*
H4B0.86420.25000.78140.059*
C50.6527 (2)0.25000.45348 (18)0.0435 (4)
C61.03437 (17)0.36590 (5)0.40791 (12)0.0400 (3)
C70.9916 (2)0.41937 (6)0.33533 (16)0.0543 (4)
H70.89760.41790.27660.065*
C81.0856 (2)0.47481 (7)0.34848 (19)0.0666 (5)
H81.05500.51070.30030.080*
C91.2238 (2)0.47573 (7)0.4334 (2)0.0643 (5)
C101.2733 (2)0.42414 (8)0.50616 (19)0.0641 (4)
H101.36880.42610.56340.077*
C111.1771 (2)0.36882 (7)0.49220 (15)0.0519 (4)
H111.20910.33310.54040.062*
F11.31755 (17)0.53023 (5)0.44594 (17)0.1030 (5)
H1111.121 (3)0.25000.369 (2)0.047 (5)*
N11.0241 (2)0.25000.41923 (15)0.0384 (3)
O10.50237 (19)0.25000.41536 (17)0.0626 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0441 (7)0.0372 (6)0.0359 (6)0.0013 (5)−0.0009 (5)0.0021 (4)
C20.0395 (6)0.0368 (6)0.0500 (7)0.0045 (5)−0.0010 (5)0.0018 (5)
C30.0493 (7)0.0465 (7)0.0461 (7)−0.0017 (6)0.0077 (6)−0.0072 (5)
C40.0529 (10)0.0585 (10)0.0361 (9)0.0000.0003 (8)0.000
C50.0384 (9)0.0483 (9)0.0437 (9)0.000−0.0027 (7)0.000
C60.0440 (7)0.0352 (5)0.0406 (6)0.0016 (5)0.0073 (5)0.0021 (4)
C70.0567 (8)0.0455 (7)0.0605 (8)0.0048 (6)0.0044 (7)0.0137 (6)
C80.0694 (10)0.0390 (7)0.0915 (12)0.0051 (7)0.0242 (10)0.0157 (7)
C90.0586 (9)0.0382 (7)0.0961 (13)−0.0091 (6)0.0292 (9)−0.0104 (7)
C100.0558 (9)0.0579 (9)0.0787 (11)−0.0105 (7)0.0011 (8)−0.0110 (8)
C110.0529 (8)0.0455 (7)0.0572 (8)−0.0038 (6)−0.0029 (6)0.0043 (6)
F10.0834 (8)0.0474 (6)0.1782 (14)−0.0225 (5)0.0323 (8)−0.0170 (6)
N10.0377 (8)0.0341 (7)0.0434 (8)0.0000.0057 (6)0.000
O10.0421 (8)0.0693 (10)0.0763 (11)0.000−0.0159 (7)0.000

Geometric parameters (Å, °)

C1—N11.4613 (14)C5—C2i1.5067 (15)
C1—C61.5083 (16)C6—C111.381 (2)
C1—C21.5533 (18)C6—C71.3856 (17)
C1—H10.9800C7—C81.380 (2)
C2—C51.5067 (15)C7—H70.9300
C2—C31.536 (2)C8—C91.357 (3)
C2—H20.9800C8—H80.9300
C3—C41.5266 (17)C9—F11.3613 (17)
C3—H3A0.9700C9—C101.367 (3)
C3—H3B0.9700C10—C111.387 (2)
C4—C3i1.5266 (17)C10—H100.9300
C4—H4A0.9700C11—H110.9300
C4—H4B0.9700N1—C1i1.4613 (14)
C5—O11.208 (2)N1—H1110.89 (2)
N1—C1—C6111.44 (10)O1—C5—C2124.12 (7)
N1—C1—C2109.70 (10)O1—C5—C2i124.12 (7)
C6—C1—C2112.11 (9)C2—C5—C2i111.76 (14)
N1—C1—H1107.8C11—C6—C7118.28 (12)
C6—C1—H1107.8C11—C6—C1122.96 (11)
C2—C1—H1107.8C7—C6—C1118.76 (12)
C5—C2—C3107.16 (11)C8—C7—C6121.34 (15)
C5—C2—C1107.58 (11)C8—C7—H7119.3
C3—C2—C1115.47 (11)C6—C7—H7119.3
C5—C2—H2108.8C9—C8—C7118.37 (14)
C3—C2—H2108.8C9—C8—H8120.8
C1—C2—H2108.8C7—C8—H8120.8
C4—C3—C2114.02 (11)C8—C9—F1118.51 (16)
C4—C3—H3A108.7C8—C9—C10122.75 (14)
C2—C3—H3A108.7F1—C9—C10118.74 (18)
C4—C3—H3B108.7C9—C10—C11118.19 (16)
C2—C3—H3B108.7C9—C10—H10120.9
H3A—C3—H3B107.6C11—C10—H10120.9
C3i—C4—C3113.91 (16)C6—C11—C10121.05 (14)
C3i—C4—H4A108.8C6—C11—H11119.5
C3—C4—H4A108.8C10—C11—H11119.5
C3i—C4—H4B108.8C1i—N1—C1112.11 (14)
C3—C4—H4B108.8C1i—N1—H111109.1 (7)
H4A—C4—H4B107.7C1—N1—H111109.1 (7)
N1—C1—C2—C5−58.02 (14)C2—C1—C6—C7−84.10 (15)
C6—C1—C2—C5177.61 (10)C11—C6—C7—C8−1.5 (2)
N1—C1—C2—C361.57 (13)C1—C6—C7—C8178.21 (13)
C6—C1—C2—C3−62.80 (13)C6—C7—C8—C90.9 (2)
C5—C2—C3—C452.64 (16)C7—C8—C9—F1179.55 (15)
C1—C2—C3—C4−67.17 (15)C7—C8—C9—C100.0 (3)
C2—C3—C4—C3i−43.3 (2)C8—C9—C10—C11−0.2 (3)
C3—C2—C5—O1113.4 (2)F1—C9—C10—C11−179.77 (15)
C1—C2—C5—O1−121.84 (19)C7—C6—C11—C101.3 (2)
C3—C2—C5—C2i−65.39 (17)C1—C6—C11—C10−178.44 (14)
C1—C2—C5—C2i59.35 (18)C9—C10—C11—C6−0.4 (2)
N1—C1—C6—C11−27.77 (17)C6—C1—N1—C1i−174.53 (8)
C2—C1—C6—C1195.62 (15)C2—C1—N1—C1i60.72 (16)
N1—C1—C6—C7152.51 (13)

Symmetry codes: (i) x, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2763).

References

  • Bruker (2004). APEX2, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Buxton, S. R. & Roberts, S. M. (1996). Guide to Organic Stereochemistry London: Longman.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Evans, T. A. & Seddon, K. R. (1997). Chem. Commun. pp. 2023–2024.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Ramachandran, R., Parthiban, P., Doddi, A., Ramkumar, V. & Kabilan, S. (2007). Acta Cryst. E63, o4559.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography