PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1192.
Published online 2008 August 23. doi:  10.1107/S1600536808026457
PMCID: PMC2960652

cis-Bis(butyl­amine-κN)bis­[sulfa­diazine(1−)-κ2 N,N′]copper(II) penta­hydrate

Abstract

In the title compound {systematic name: cis-bis­[4-amino-N-(pyrimidin-2-yl)benzene­sulfonamidato-κ2 N,N′]bis­(butyl­amine-κN)copper(II) penta­hydrate}, [Cu(C10H9N4O2S)2(C4H11N)2]·5H2O or [Cu(sdz)2(ba)2]·5H2O [ba is butyl­amine and sdz = sulfadiazine(1−)], the copper(II) cation is six-coordinated by four N atoms of two sulfadiazine ligands and two N atoms of butyl­amine ligands. The copper(II) ion and one of the water mol­ecules lie on twofold rotation axes. One of the butyl groups is disordered over two sites, with occupancies of 0.395 (8) and 0.605 (8). The geometry around the S atom is distorted tetra­hedral. The crystal structure involves inter­molecular N—H(...)N and N—H(...)O hydrogen bonds. N—H(...)N hydrogen bonds between sdz ligands lead to a sheet structure parallel to the ab plane.

Related literature

For related structures, see: Heren et al. (2006 [triangle]); Chung et al. (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1192-scheme1.jpg

Experimental

Crystal data

  • [Cu(C10H9N4O2S)2(C4H11N)2]·5H2O
  • M r = 790.04
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1192-efi4.jpg
  • a = 22.623 (6) Å
  • b = 10.342 (5) Å
  • c = 16.250 (6) Å
  • V = 3802 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.74 mm−1
  • T = 296 K
  • 0.34 × 0.21 × 0.19 mm

Data collection

  • Stoe IPDS2 diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.821, T max = 0.899
  • 57960 measured reflections
  • 4235 independent reflections
  • 2098 reflections with I > 2σ(I)
  • R int = 0.085

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.141
  • S = 0.90
  • 4235 reflections
  • 234 parameters
  • H-atom parameters constrained
  • Δρmax = 0.65 e Å−3
  • Δρmin = −0.45 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808026457/cf2216sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026457/cf2216Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS2 diffractometer (purchased under grant No. F279 of the University Research Fund).

supplementary crystallographic information

Comment

In the title complex (I), the copper(II) ion is six-coordinated by four N atoms of sulfadiazine ligands and two N atoms of butylammonium ligands. The copper(II) ion and one of the water molecules lie on twofold rotation axes. It is found that the Cu–Nsdz and Cu–Nba bond distances are nearly equal. The bond angles around the S atom correspond to a distorted tetrahedral geometry. The C4–N5 bond distance and the torsion angle C1–S1–N1–C7 are comparable to those observed in related structures (Heren et al., 2006; Chung et al., 1975). One of the butyl groups is disordered over two sites with occupancies of 0.395 (8):0.605 (8) (see Fig. 1).

The packing of (I) is stabilized by intermolecular N—H···N and N—H···O hydrogen bonds (Table 1). The N—H···N hydrogen bond takes place between sdz ligands and it is seen that these hydrogen bonds generate a sheet structure parallel to the ab plane (Fig. 2). The H atoms of water molecules could not be located from a Fourier map. However, it is possible to see that water molecules are involved in hydrogen bonds with sdz and ba ligands on the basis of interatomic distances.

Experimental

A solution of butylamine (2 mmol) in ethanol (20 ml) was added dropwise with stirring to a solution of Cu(II) sulfadiazine (1 mmol) in methanol (40 ml). The solution was heated and stirred for 3 h at 343 K and then the mixture was cooled to room temperature. The blue crystals were filtered off, washed with cold distilled water and acetone, and dried in vacuo. Analysis calculated: C 42.62, H 5.84, N 17.76%; found: C 43.08, H 5.72, N 18.25%.

Refinement

One butyl group shows disorder and was modelled with two different orientations and site occupancies of 0.395 (8):0.605 (8). The H atoms of water molecules could not be located from a Fourier map. All other H atoms were placed in geometrically idealized positions with distances N—H = 0.86–0.90 Å, C—H = 0.93–0.97 Å, and were refined as riding atoms with Uiso(H) = 1.2Ueq(C,N) and Uiso(Hmethyl) = 1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids. Only the major part of the disordered ba ligand is included. [Symmetry code: (i) -x + 1, y, -z + 1/2.]
Fig. 2.
A view of the complex showing the sheet structure parallel to the ab plane. The butyl groups, water molecules and some hydrogen bonds have been omitted for clarity. Other hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x + 1/2, y - 1/2, ...

Crystal data

[Cu(C10H9N4O2S)2(C4H11N)2]·5H2OF000 = 1594
Mr = 790.04Dx = 1.347 Mg m3
Orthorhombic, PbcnMo Kα radiation λ = 0.71069 Å
Hall symbol: -P 2n 2abCell parameters from 30097 reflections
a = 22.623 (6) Åθ = 1.8–27.1º
b = 10.342 (5) ŵ = 0.74 mm1
c = 16.250 (6) ÅT = 296 K
V = 3802 (2) Å3Prism, blue
Z = 40.34 × 0.21 × 0.19 mm

Data collection

Stoe IPDS2 diffractometer4235 independent reflections
Radiation source: fine-focus sealed tube2098 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.085
T = 296 Kθmax = 27.2º
rotation method scansθmin = 1.8º
Absorption correction: integration(X-RED32; Stoe & Cie, 2002)h = −28→28
Tmin = 0.821, Tmax = 0.900k = −13→13
57960 measured reflectionsl = −20→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.141  w = 1/[σ2(Fo2) + (0.0787P)2] where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
4235 reflectionsΔρmax = 0.65 e Å3
234 parametersΔρmin = −0.45 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.33524 (14)0.7316 (3)0.45323 (19)0.0565 (8)
C20.29637 (16)0.8185 (4)0.4879 (2)0.0684 (9)
H20.31090.89290.51290.082*
C30.23634 (16)0.7970 (4)0.4860 (2)0.0752 (10)
H30.21080.85590.51070.090*
C40.21358 (15)0.6879 (4)0.4473 (2)0.0689 (9)
C50.25293 (17)0.6011 (4)0.4128 (2)0.0728 (10)
H50.23870.52710.38700.087*
C60.31255 (15)0.6227 (3)0.4160 (2)0.0664 (9)
H60.33820.56280.39270.080*
C70.41743 (13)0.8242 (3)0.3032 (2)0.0565 (8)
C80.36943 (17)0.9966 (4)0.2474 (3)0.0800 (11)
H80.34521.06860.25360.096*
C90.39032 (17)0.9691 (4)0.1702 (3)0.0847 (12)
H90.38021.01900.12470.102*
C100.42700 (16)0.8638 (4)0.1637 (2)0.0745 (10)
H100.44270.84260.11250.089*
C110.3906 (2)0.4981 (5)0.2216 (4)0.124 (2)
H11A0.37060.58010.21360.149*
H11B0.39250.48410.28060.149*
C120.3518 (2)0.4000 (5)0.1892 (4)0.1116 (17)
H12A0.37400.31990.18540.134*
H12B0.34090.42460.13370.134*
C13A0.2962 (4)0.3733 (8)0.2362 (5)0.088 (2)0.605 (8)
H13A0.27640.45490.24610.105*0.605 (8)
H13B0.30700.33760.28930.105*0.605 (8)
C13B0.2848 (5)0.4111 (13)0.1823 (9)0.088 (2)0.395 (8)
H13C0.27090.48510.21340.105*0.395 (8)
H13D0.27330.42230.12530.105*0.395 (8)
C14A0.2505 (12)0.277 (3)0.1934 (18)0.108 (4)0.605 (8)
H14A0.21690.26580.22860.162*0.605 (8)
H14B0.26920.19540.18410.162*0.605 (8)
H14C0.23800.31320.14180.162*0.605 (8)
C14B0.261 (2)0.299 (4)0.213 (3)0.108 (4)0.395 (8)
H14D0.21860.30430.21150.162*0.395 (8)
H14E0.27360.28790.26930.162*0.395 (8)
H14F0.27410.22700.18100.162*0.395 (8)
N10.43499 (11)0.7422 (3)0.36300 (16)0.0586 (7)
N20.38163 (12)0.9265 (3)0.31428 (17)0.0635 (7)
N30.44067 (12)0.7910 (3)0.22883 (16)0.0596 (7)
N40.44912 (14)0.5158 (3)0.1947 (2)0.0896 (10)
H4A0.44780.53560.14080.108*
H4B0.46770.43910.19900.108*
N50.15418 (15)0.6661 (4)0.4447 (2)0.1001 (11)
H5A0.14070.59760.42130.120*
H5B0.13020.72090.46640.120*
O10.42208 (10)0.8844 (2)0.48919 (14)0.0690 (6)
O20.43907 (10)0.6530 (2)0.49927 (15)0.0731 (7)
O30.02149 (14)0.6126 (3)0.4017 (2)0.1193 (11)
O40.00000.7493 (5)0.25000.151 (2)
O50.43200 (14)0.3833 (3)0.5011 (3)0.1410 (15)
S20.41156 (4)0.75774 (8)0.45398 (5)0.0588 (2)
Cu10.50000.64823 (6)0.25000.0647 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0482 (17)0.062 (2)0.0590 (17)−0.0025 (16)0.0034 (15)0.0033 (16)
C20.056 (2)0.068 (2)0.081 (2)−0.0050 (18)0.0009 (18)−0.0092 (19)
C30.053 (2)0.080 (2)0.093 (3)0.0044 (19)0.0133 (19)−0.005 (2)
C40.051 (2)0.078 (2)0.078 (2)−0.0120 (19)−0.0005 (17)0.007 (2)
C50.059 (2)0.077 (2)0.083 (2)−0.013 (2)−0.0008 (19)−0.005 (2)
C60.054 (2)0.069 (2)0.076 (2)−0.0018 (17)0.0045 (17)−0.0079 (18)
C70.0426 (17)0.064 (2)0.063 (2)−0.0072 (16)0.0046 (15)0.0020 (16)
C80.067 (2)0.084 (3)0.088 (3)0.012 (2)−0.003 (2)0.020 (2)
C90.068 (2)0.105 (3)0.081 (3)0.004 (2)−0.003 (2)0.028 (2)
C100.057 (2)0.100 (3)0.066 (2)−0.001 (2)0.0069 (17)0.007 (2)
C110.089 (3)0.096 (3)0.187 (6)−0.029 (3)0.050 (3)−0.047 (4)
C120.080 (3)0.108 (4)0.146 (4)−0.006 (3)0.002 (3)−0.049 (3)
C13A0.079 (4)0.092 (5)0.092 (5)−0.012 (4)0.002 (4)−0.018 (4)
C13B0.079 (4)0.092 (5)0.092 (5)−0.012 (4)0.002 (4)−0.018 (4)
C14A0.081 (11)0.103 (9)0.140 (15)−0.017 (6)−0.014 (8)−0.034 (8)
C14B0.081 (11)0.103 (9)0.140 (15)−0.017 (6)−0.014 (8)−0.034 (8)
N10.0480 (15)0.0615 (16)0.0664 (16)0.0056 (13)0.0059 (12)0.0030 (14)
N20.0588 (17)0.0636 (17)0.0679 (17)0.0086 (14)0.0022 (14)0.0019 (15)
N30.0506 (16)0.0697 (17)0.0585 (16)−0.0061 (14)0.0041 (12)−0.0026 (14)
N40.070 (2)0.087 (2)0.112 (3)0.0022 (18)0.0034 (19)−0.021 (2)
N50.0505 (18)0.110 (3)0.140 (3)−0.0131 (19)0.004 (2)−0.009 (2)
O10.0574 (14)0.0741 (15)0.0755 (14)−0.0064 (12)−0.0044 (12)−0.0138 (12)
O20.0606 (15)0.0799 (16)0.0787 (15)0.0053 (13)−0.0093 (12)0.0243 (13)
O30.079 (2)0.125 (3)0.155 (3)0.0017 (19)0.018 (2)−0.008 (2)
O40.174 (6)0.091 (3)0.188 (6)0.0000.053 (4)0.000
O50.073 (2)0.096 (2)0.253 (5)0.0007 (18)−0.015 (3)−0.001 (3)
S20.0469 (4)0.0667 (5)0.0629 (5)−0.0008 (4)−0.0020 (4)0.0035 (4)
Cu10.0516 (3)0.0697 (4)0.0726 (4)0.0000.0051 (3)0.000

Geometric parameters (Å, °)

C1—C61.377 (5)C12—C13B1.524 (13)
C1—C21.378 (5)C12—H12A0.970
C1—S21.748 (3)C12—H12B0.970
C2—C31.377 (5)C13A—C14A1.592 (16)
C2—H20.930C13A—H13A0.970
C3—C41.391 (5)C13A—H13B0.970
C3—H30.930C13B—C14B1.37 (5)
C4—N51.363 (5)C13B—H13C0.970
C4—C51.382 (5)C13B—H13D0.970
C5—C61.368 (5)C14A—H14A0.960
C5—H50.930C14A—H14B0.960
C6—H60.930C14A—H14C0.960
C7—N21.344 (4)C14B—H14D0.960
C7—N11.351 (4)C14B—H14E0.960
C7—N31.361 (4)C14B—H14F0.960
C8—N21.334 (5)N1—S21.579 (3)
C8—C91.371 (6)N3—Cu12.025 (3)
C8—H80.930N4—Cu12.002 (3)
C9—C101.373 (5)N4—H4A0.900
C9—H90.930N4—H4B0.900
C10—N31.336 (4)N5—H5A0.860
C10—H100.930N5—H5B0.860
C11—N41.407 (5)O1—S21.449 (2)
C11—C121.441 (6)O2—S21.450 (2)
C11—H11A0.970Cu1—N4i2.002 (3)
C11—H11B0.970Cu1—N3i2.025 (3)
C12—C13A1.496 (9)
C6—C1—C2118.4 (3)C12—C13A—H13B108.3
C6—C1—S2119.9 (3)C14A—C13A—H13B108.3
C2—C1—S2121.8 (3)H13A—C13A—H13B107.4
C3—C2—C1121.0 (3)C14B—C13B—C12107 (2)
C3—C2—H2119.5C14B—C13B—H13C110.2
C1—C2—H2119.5C12—C13B—H13C110.2
C2—C3—C4120.4 (4)C14B—C13B—H13D110.2
C2—C3—H3119.8C12—C13B—H13D110.2
C4—C3—H3119.8H13C—C13B—H13D108.5
N5—C4—C5121.0 (4)C13A—C14A—H14A109.5
N5—C4—C3120.8 (4)C13A—C14A—H14B109.5
C5—C4—C3118.1 (3)H14A—C14A—H14B109.5
C6—C5—C4120.9 (4)C13A—C14A—H14C109.5
C6—C5—H5119.6H14A—C14A—H14C109.5
C4—C5—H5119.6H14B—C14A—H14C109.5
C5—C6—C1121.2 (3)C13B—C14B—H14D109.5
C5—C6—H6119.4C13B—C14B—H14E109.5
C1—C6—H6119.4H14D—C14B—H14E109.5
N2—C7—N1125.1 (3)C13B—C14B—H14F109.5
N2—C7—N3123.4 (3)H14D—C14B—H14F109.5
N1—C7—N3111.5 (3)H14E—C14B—H14F109.5
N2—C8—C9124.2 (4)C7—N1—S2120.8 (2)
N2—C8—H8117.9C8—N2—C7116.2 (3)
C9—C8—H8117.9C10—N3—C7118.1 (3)
C8—C9—C10116.3 (4)C10—N3—Cu1134.4 (2)
C8—C9—H9121.8C7—N3—Cu1106.8 (2)
C10—C9—H9121.8C11—N4—Cu1119.4 (3)
N3—C10—C9121.7 (4)C11—N4—H4A107.5
N3—C10—H10119.1Cu1—N4—H4A107.5
C9—C10—H10119.1C11—N4—H4B107.5
N4—C11—C12123.4 (4)Cu1—N4—H4B107.5
N4—C11—H11A106.5H4A—N4—H4B107.0
C12—C11—H11A106.5C4—N5—H5A120.0
N4—C11—H11B106.5C4—N5—H5B120.0
C12—C11—H11B106.5H5A—N5—H5B120.0
H11A—C11—H11B106.5O1—S2—O2113.88 (15)
C11—C12—C13A117.0 (5)O1—S2—N1113.99 (15)
C11—C12—C13B125.3 (6)O2—S2—N1104.77 (15)
C11—C12—H12A108.0O1—S2—C1107.76 (15)
C13A—C12—H12A108.0O2—S2—C1108.16 (15)
C13B—C12—H12A125.1N1—S2—C1108.02 (15)
C11—C12—H12B108.0N4—Cu1—N4i93.7 (2)
C13A—C12—H12B108.0N4—Cu1—N3i162.98 (13)
C13B—C12—H12B70.1N4i—Cu1—N3i92.38 (13)
H12A—C12—H12B107.3N4—Cu1—N392.38 (13)
C12—C13A—C14A116.0 (14)N4i—Cu1—N3162.98 (13)
C12—C13A—H13A108.3N3i—Cu1—N386.36 (16)
C14A—C13A—H13A108.3
C6—C1—C2—C30.5 (5)C9—C10—N3—Cu1−169.6 (3)
S2—C1—C2—C3179.3 (3)N2—C7—N3—C10−0.2 (5)
C1—C2—C3—C4−1.4 (6)N1—C7—N3—C10179.9 (3)
C2—C3—C4—N5−179.6 (4)N2—C7—N3—Cu1171.8 (2)
C2—C3—C4—C51.4 (6)N1—C7—N3—Cu1−8.1 (3)
N5—C4—C5—C6−179.5 (4)C12—C11—N4—Cu1−176.0 (5)
C3—C4—C5—C6−0.5 (6)C7—N1—S2—O1−55.6 (3)
C4—C5—C6—C1−0.4 (6)C7—N1—S2—O2179.3 (2)
C2—C1—C6—C50.4 (5)C7—N1—S2—C164.1 (3)
S2—C1—C6—C5−178.4 (3)C6—C1—S2—O1174.2 (3)
N2—C8—C9—C10−1.4 (6)C2—C1—S2—O1−4.6 (3)
C8—C9—C10—N31.1 (6)C6—C1—S2—O2−62.3 (3)
N4—C11—C12—C13A166.6 (7)C2—C1—S2—O2118.9 (3)
N4—C11—C12—C13B−149.2 (9)C6—C1—S2—N150.6 (3)
C11—C12—C13A—C14A172.7 (14)C2—C1—S2—N1−128.2 (3)
C13B—C12—C13A—C14A59.0 (16)C11—N4—Cu1—N4i108.9 (5)
C11—C12—C13B—C14B−132 (2)C11—N4—Cu1—N3i−140.5 (5)
C13A—C12—C13B—C14B−42 (2)C11—N4—Cu1—N3−55.2 (4)
N2—C7—N1—S22.7 (4)C10—N3—Cu1—N4−79.3 (4)
N3—C7—N1—S2−177.4 (2)C7—N3—Cu1—N4110.6 (2)
C9—C8—N2—C70.9 (6)C10—N3—Cu1—N4i169.9 (4)
N1—C7—N2—C8179.8 (3)C7—N3—Cu1—N4i−0.1 (5)
N3—C7—N2—C8−0.1 (5)C10—N3—Cu1—N3i83.7 (3)
C9—C10—N3—C7−0.4 (5)C7—N3—Cu1—N3i−86.4 (2)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N5—H5A···N2ii0.862.533.359 (5)162
N4—H4A···O5iii0.902.453.337 (6)171
N4—H4B···O4iv0.902.253.119 (6)161
N5—H5B···O5v0.862.263.113 (5)170

Symmetry codes: (ii) −x+1/2, y−1/2, z; (iii) x, −y+1, z−1/2; (iv) x+1/2, y−1/2, −z+1/2; (v) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2216).

References

  • Chung, H. K., Hoon, S. K., Young, K. Y. & Il-Hwan, S. (1975). J. Korean Phys. Soc.8, 37–48.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Heren, Z., Paşaoğlu, H. & Kaştaş, G. (2006). Acta Cryst. E62, o3437–o3439.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography