PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1131.
Published online 2008 August 6. doi:  10.1107/S1600536808024495
PMCID: PMC2960646

Aqua­bis(3′-hydr­oxy-2,2′-bipyridine-3-olato-κ2 N,N′)zinc(II)

Abstract

In the title complex, [Zn(C10H7N2O2)2(H2O)], the ZnII ion and water O atom are located on a crystallographic twofold rotation axis and the metal atom assumes a distorted trigonal-bipyramidal ZnN4O coordination geometry. An intra­molecular O—H(...)O hydrogen bond occurs within the ligand and inter­molecular O—H(...)O hydrogen bonds involving the water mol­ecule result in a sheet structure in the crystal structure. In addition, a short C—O(...)π contact between the O atom of the deprotonated hydroxyl group and a nearby pyridine ring [O(...)Cg = 3.977 (2) Å, where Cg is the centroid of the pyridine ring] is observed.

Related literature

For related structures, see: Cargill Thompson et al. (1996 [triangle]); Stephenson & Hardie (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1131-scheme1.jpg

Experimental

Crystal data

  • [Zn(C10H7N2O2)2(H2O)]
  • M r = 457.74
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1131-efi4.jpg
  • a = 13.931 (2) Å
  • b = 9.1685 (16) Å
  • c = 14.364 (3) Å
  • V = 1834.7 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.38 mm−1
  • T = 298 (2) K
  • 0.40 × 0.21 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1997 [triangle]) T min = 0.608, T max = 0.770
  • 8883 measured reflections
  • 1621 independent reflections
  • 1293 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.083
  • S = 1.05
  • 1621 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808024495/hb2736sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024495/hb2736Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Shandong Province of China (Grant No. Y2007B26).

supplementary crystallographic information

Comment

2,2'-Bipyridine-3,3'-diol (bpd) has the potential to be a useful multi-dentate ligand and may act as a bridging ligand due to coordination of its N and O atoms. A few multi-nuclear complexes have been synthesized with mono-deprotonated bpd as a bridging ligand (Cargill Thompson et al. 1996; Stephenson & Hardie, 2007). We attempted to prepare a similar compound, but instead we obtained the mono-nuclear title complex, (I), (Fig. 1) and report its structure herein.

The Zn1 atom in (I) lies in a twofold axis and is in a distorted trigonal bipyramidal geometry (Table 1). The dihedral angle between the N1 and N2 ring mean planes is 13.08 (12)°. An intramolecular O—H···O hydrogen bond between O atom of deprotonated hydroxyl and hydroxyl group (Table 2) occcurs within the ligand. The water molecule (O atom site symmetry 2) makes an intermolecular O—H···.O hydrogen bond to result in a supramolecular sheet structure in the ab plane (Fig. 2). In addition to the hydrogen bonds there is weak interaction between C—O bond and pyridine ring and the relevant distances are as follows: C4—O2···Cg1i = 3.977 (2) Å and C4—O2···Cg1iperp = 3.635 Å [Cg1 is the centroid of N1/C1—C5 ring, C4—O2···Cg1iperp is the perpendicular distance from O2 atom to ring Cg1i; symmetry code: (i) 1/2-x, 1/2+y, z].

Experimental

A 10-ml H2O solution of ZnCl2 (0.1214 g, 0.891 mmol) was added to a 10-ml hot ethanol solution containing 2,2'-bipyridine-3,3'-diol (0.1664 g, 0.884 mmol), and the mixed solution was stirred for a few minutes. Yellow blocks of (I) were obtained after the solution had been allowed to stand at room temperature for two weeks.

Refinement

The water H atom was located in a difference Fourier map and refined as riding in its as found relative position with Uiso(H) = 1.5Ueq(O). The other H atoms geometrically placed (C—H = 0.93-0.96Å, O—H = 0.82Å) and refined as riding with with Uiso = Uiso = 1.2Ueq(C) or 1.5Ueq(methyl C, O).

Figures

Fig. 1.
View of (I), showing displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level. The hydrogen bond is indicated by a dashed line. Symmetry code: (i) -1/2 + x, -1/2 + y, 3/2 - z
Fig. 2.
Intermolecular hydrogen bonds (dashed line) in the crystal of (I).

Crystal data

[Zn(C10H7N2O2)2(H2O)]F000 = 936
Mr = 457.74Dx = 1.657 Mg m3
Orthorhombic, PbcnMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2299 reflections
a = 13.931 (2) Åθ = 2.7–24.6º
b = 9.1685 (16) ŵ = 1.38 mm1
c = 14.364 (3) ÅT = 298 (2) K
V = 1834.7 (6) Å3Block, yellow
Z = 40.40 × 0.21 × 0.20 mm

Data collection

Bruker SMART APEX CCD diffractometer1621 independent reflections
Radiation source: fine-focus sealed tube1293 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.035
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.7º
Absorption correction: multi-scan(SADABS; Bruker, 1997)h = −15→16
Tmin = 0.608, Tmax = 0.770k = −9→10
8883 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap and geom
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.083  w = 1/[σ2(Fo2) + (0.0435P)2 + 0.4048P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1621 reflectionsΔρmax = 0.24 e Å3
137 parametersΔρmin = −0.22 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.18495 (17)−0.0831 (3)0.84200 (18)0.0497 (6)
H8A0.1443−0.13180.88290.060*
C20.28226 (18)−0.0979 (3)0.85235 (18)0.0505 (6)
H70.3078−0.15600.89930.061*
C30.34041 (17)−0.0251 (3)0.7919 (2)0.0484 (6)
H6A0.4066−0.03460.79800.058*
C40.30414 (16)0.0627 (3)0.72164 (17)0.0405 (6)
C50.20250 (14)0.0718 (2)0.71420 (15)0.0328 (5)
C60.14629 (15)0.1528 (2)0.64177 (14)0.0335 (5)
C70.18121 (17)0.2589 (3)0.57966 (15)0.0433 (6)
C80.1158 (2)0.3273 (3)0.52075 (16)0.0532 (7)
H40.13710.40130.48160.064*
C90.0216 (2)0.2884 (3)0.51908 (18)0.0530 (7)
H3−0.02120.33290.47830.064*
C10−0.00846 (16)0.1818 (3)0.57930 (17)0.0482 (6)
H2−0.07240.15280.57820.058*
N10.14707 (14)−0.00122 (19)0.77522 (15)0.0401 (5)
N20.05150 (12)0.11824 (19)0.63953 (12)0.0379 (5)
O10.27183 (13)0.3017 (2)0.57387 (13)0.0673 (6)
H50.30440.25530.61110.101*
O20.36348 (11)0.1306 (2)0.66513 (12)0.0574 (5)
O30.0000−0.2225 (3)0.75000.0640 (8)
H1−0.0443−0.26570.77300.096*
Zn10.0000−0.00413 (4)0.75000.03787 (16)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0382 (14)0.0538 (16)0.0571 (16)−0.0007 (11)−0.0022 (12)0.0162 (12)
C20.0420 (14)0.0485 (15)0.0610 (16)0.0054 (11)−0.0147 (12)0.0037 (12)
C30.0248 (12)0.0561 (16)0.0644 (16)0.0022 (11)−0.0092 (13)−0.0119 (13)
C40.0291 (12)0.0451 (13)0.0474 (13)−0.0045 (11)0.0016 (11)−0.0133 (11)
C50.0264 (11)0.0330 (12)0.0389 (12)−0.0026 (9)0.0007 (9)−0.0086 (10)
C60.0311 (12)0.0340 (11)0.0353 (11)0.0003 (9)0.0039 (9)−0.0069 (9)
C70.0451 (14)0.0455 (14)0.0393 (13)−0.0082 (11)0.0066 (11)−0.0059 (11)
C80.0669 (19)0.0496 (16)0.0432 (14)−0.0014 (13)0.0054 (13)0.0075 (12)
C90.0555 (16)0.0570 (17)0.0464 (15)0.0136 (14)−0.0026 (12)0.0049 (13)
C100.0356 (14)0.0567 (16)0.0525 (15)0.0114 (11)−0.0028 (11)0.0013 (13)
N10.0276 (11)0.0446 (12)0.0482 (11)0.0002 (8)0.0001 (9)0.0067 (9)
N20.0272 (10)0.0421 (11)0.0444 (11)0.0025 (8)0.0014 (8)0.0001 (8)
O10.0538 (12)0.0821 (14)0.0661 (12)−0.0260 (10)0.0022 (9)0.0184 (11)
O20.0277 (9)0.0776 (13)0.0669 (11)−0.0141 (8)0.0075 (8)−0.0009 (10)
O30.0353 (14)0.0391 (14)0.118 (2)0.0000.0278 (13)0.000
Zn10.0232 (2)0.0418 (3)0.0487 (3)0.0000.00383 (15)0.000

Geometric parameters (Å, °)

C1—N11.328 (3)C7—C81.392 (3)
C1—C21.370 (3)C8—C91.361 (4)
C1—H8A0.9300C8—H40.9300
C2—C31.362 (4)C9—C101.371 (4)
C2—H70.9300C9—H30.9300
C3—C41.386 (4)C10—N21.336 (3)
C3—H6A0.9300C10—H20.9300
C4—O21.315 (3)O1—H50.8200
C4—C51.422 (3)O3—H10.8042
C5—N11.346 (3)Zn1—N12.081 (2)
C5—C61.499 (3)Zn1—N22.0716 (18)
C6—N21.359 (3)Zn1—N2i2.0716 (18)
C6—C71.407 (3)Zn1—N1i2.081 (2)
C7—O11.324 (3)O3—Zn12.002 (2)
N1—C1—C2121.8 (2)C8—C9—C10118.0 (2)
N1—C1—H8A119.1C8—C9—H3121.0
C2—C1—H8A119.1C10—C9—H3121.0
C3—C2—C1118.1 (2)N2—C10—C9121.9 (2)
C3—C2—H7121.0N2—C10—H2119.0
C1—C2—H7121.0C9—C10—H2119.0
C2—C3—C4122.1 (2)C1—N1—C5121.6 (2)
C2—C3—H6A118.9C1—N1—Zn1120.67 (16)
C4—C3—H6A118.9C5—N1—Zn1117.24 (15)
O2—C4—C3119.7 (2)C10—N2—C6121.4 (2)
O2—C4—C5123.5 (2)C10—N2—Zn1121.03 (15)
C3—C4—C5116.8 (2)C6—N2—Zn1116.41 (14)
N1—C5—C4119.5 (2)C7—O1—H5109.5
N1—C5—C6113.49 (18)Zn1—O3—H1119.5
C4—C5—C6126.9 (2)O3—Zn1—N2122.79 (5)
N2—C6—C7118.8 (2)O3—Zn1—N2i122.79 (5)
N2—C6—C5114.11 (18)N2—Zn1—N2i114.42 (10)
C7—C6—C5127.03 (19)O3—Zn1—N190.73 (5)
O1—C7—C8116.9 (2)N2—Zn1—N177.61 (7)
O1—C7—C6125.0 (2)N2i—Zn1—N1101.58 (7)
C8—C7—C6118.1 (2)O3—Zn1—N1i90.73 (5)
C9—C8—C7121.6 (2)N2—Zn1—N1i101.58 (7)
C9—C8—H4119.2N2i—Zn1—N1i77.61 (7)
C7—C8—H4119.2N1—Zn1—N1i178.53 (10)
N1—C1—C2—C30.3 (4)C4—C5—N1—Zn1−172.45 (15)
C1—C2—C3—C40.3 (4)C6—C5—N1—Zn15.8 (2)
C2—C3—C4—O2−180.0 (2)C9—C10—N2—C6−2.3 (4)
C2—C3—C4—C5−1.0 (4)C9—C10—N2—Zn1165.07 (19)
O2—C4—C5—N1−179.9 (2)C7—C6—N2—C100.6 (3)
C3—C4—C5—N11.2 (3)C5—C6—N2—C10179.53 (19)
O2—C4—C5—C62.1 (4)C7—C6—N2—Zn1−167.35 (15)
C3—C4—C5—C6−176.8 (2)C5—C6—N2—Zn111.6 (2)
N1—C5—C6—N2−11.3 (3)C10—N2—Zn1—O3102.57 (17)
C4—C5—C6—N2166.8 (2)C6—N2—Zn1—O3−89.42 (15)
N1—C5—C6—C7167.5 (2)C10—N2—Zn1—N2i−77.43 (17)
C4—C5—C6—C7−14.4 (3)C6—N2—Zn1—N2i90.58 (15)
N2—C6—C7—O1−179.3 (2)C10—N2—Zn1—N1−174.67 (19)
C5—C6—C7—O11.9 (4)C6—N2—Zn1—N1−6.65 (14)
N2—C6—C7—C82.2 (3)C10—N2—Zn1—N1i4.08 (19)
C5—C6—C7—C8−176.6 (2)C6—N2—Zn1—N1i172.10 (14)
O1—C7—C8—C9178.0 (2)C1—N1—Zn1—O3−48.31 (19)
C6—C7—C8—C9−3.4 (4)C5—N1—Zn1—O3123.54 (16)
C7—C8—C9—C101.8 (4)C1—N1—Zn1—N2−171.8 (2)
C8—C9—C10—N21.1 (4)C5—N1—Zn1—N20.05 (16)
C2—C1—N1—C5−0.1 (4)C1—N1—Zn1—N2i75.4 (2)
C2—C1—N1—Zn1171.39 (19)C5—N1—Zn1—N2i−112.72 (16)
C4—C5—N1—C1−0.7 (3)C1—N1—Zn1—N1i131.69 (18)
C6—C5—N1—C1177.6 (2)C5—N1—Zn1—N1i−56.46 (16)

Symmetry codes: (i) −x, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H5···O20.821.612.410 (3)165
O3—H1···O2ii0.801.832.630 (2)174

Symmetry codes: (ii) x−1/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2736).

References

  • Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cargill Thompson, A. M. W., Jeffery, J. C., Liard, D. J. & Ward, M. D. (1996). J. Chem. Soc. Dalton Trans. pp. 879–884.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stephenson, M. D. & Hardie, M. J. (2007). CrystEngComm.9, 496–502.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography