PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1691.
Published online 2008 August 6. doi:  10.1107/S1600536808024653
PMCID: PMC2960643

N-(2,6-Dimethyl­phen­yl)benzene­sulfonamide

Abstract

In the crystal structure of the title compound, C14H15NO2S, the N—H bond is trans to one of the S=O double bonds, similar to what is observed in N-(2-methyl­phen­yl)benzene­sulfonamide and other aryl sulfonamides. The two aromatic rings enclose a dihedral angle of 44.9 (1)°. The mol­ecules are connected by inter­molecular N—H(...)O hydrogen bonds into chains running along the a axis. An intermolecular C—H(...)O hydrogen bond is also present.

Related literature

For related literature, see: Gelbrich et al. (2007 [triangle]); Gowda et al. (2005 [triangle], 2008 [triangle]); Gowda, Babitha et al. (2007 [triangle]); Gowda, Foro et al. (2007 [triangle]); Perlovich et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1691-scheme1.jpg

Experimental

Crystal data

  • C14H15NO2S
  • M r = 261.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1691-efi1.jpg
  • a = 5.2133 (7) Å
  • b = 17.971 (2) Å
  • c = 14.040 (1) Å
  • β = 91.681 (9)°
  • V = 1314.8 (2) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 2.13 mm−1
  • T = 299 (2) K
  • 0.55 × 0.35 × 0.33 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 2622 measured reflections
  • 2340 independent reflections
  • 2197 reflections with I > 2σ(I)
  • R int = 0.071
  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.134
  • S = 1.08
  • 2340 reflections
  • 164 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996 [triangle]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808024653/bt2760sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024653/bt2760Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the crystal structures of N-(aryl)-sulfonamides, in the present work, the structure of N-(2,6-dimethylphenyl)-benzenesulfonamide (N26DMPBSA) has been determined (Gowda et al., 2005, 2008; Gowda, Babitha et al. 2007; Gowda, Foro et al. 2007). The the N—H bond is trans to one of the S—O double bonds (Fig. 1), similar to what is observed in N-(2-methylphenyl)-benzenesulfonamide (N2MPBSA)(Gowda et al., 2008) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007;). The two aromatic rings are rotated relative to each other by 44.9 (1)°, compared with the value of 61.5 (1)° in N2MPBSA. The other bond parameters in N26DMPBSA are similar to those observed in N2MPBSA and other N-(aryl)-sulfonamides (Gowda, Babitha et al., 2007; Gowda, Foro et al. 2007; Gowda et al. 2008; Perlovich et al., 2006; Gelbrich et al., 2007). The packing diagram of N26DMPBSA via intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

Experimental

The solution of benzene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual benzenesulfonylchloride was treated with 2,6-dimethylaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid N-(2,6-dimethylphenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Gowda et al., 2005). The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å, N—H = 0.86 Å, and were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C14H15NO2SF000 = 552
Mr = 261.33Dx = 1.320 Mg m3
Monoclinic, P21/nCu Kα radiation λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 5.2133 (7) Åθ = 4.0–19.2º
b = 17.971 (2) ŵ = 2.14 mm1
c = 14.040 (1) ÅT = 299 (2) K
β = 91.681 (9)ºPrism, colourless
V = 1314.8 (2) Å30.55 × 0.35 × 0.33 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.071
Radiation source: fine-focus sealed tubeθmax = 66.9º
Monochromator: graphiteθmin = 4.0º
T = 299(2) Kh = −6→1
ω/2θ scansk = −21→0
Absorption correction: nonel = −16→16
2622 measured reflections3 standard reflections
2340 independent reflections every 120 min
2197 reflections with I > 2σ(I) intensity decay: 1.0%

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047  w = 1/[σ2(Fo2) + (0.0807P)2 + 0.6081P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.134(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.35 e Å3
2340 reflectionsΔρmin = −0.41 e Å3
164 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0060 (9)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.0070 (4)0.19125 (11)0.78195 (15)0.0359 (5)
C2−0.2175 (4)0.23812 (13)0.7860 (2)0.0518 (6)
H2−0.33030.24340.73390.062*
C3−0.2557 (5)0.27695 (15)0.8699 (3)0.0677 (8)
H3−0.39720.30810.87440.081*
C4−0.0875 (6)0.26990 (16)0.9461 (2)0.0666 (8)
H4−0.11410.29691.00140.080*
C50.1186 (6)0.22354 (15)0.94146 (19)0.0590 (7)
H50.23090.21860.99380.071*
C60.1608 (4)0.18376 (13)0.85885 (17)0.0453 (5)
H60.30170.15220.85540.054*
C7−0.0178 (4)0.00007 (11)0.74093 (15)0.0373 (5)
C8−0.1139 (4)−0.01229 (12)0.83144 (16)0.0437 (5)
C9−0.0176 (6)−0.07186 (15)0.8839 (2)0.0609 (7)
H9−0.0788−0.08090.94440.073*
C100.1675 (7)−0.11784 (16)0.8480 (3)0.0730 (9)
H100.2336−0.15680.88480.088*
C110.2541 (6)−0.10620 (14)0.7582 (2)0.0680 (8)
H110.3769−0.13820.73430.082*
C120.1628 (5)−0.04751 (13)0.70148 (18)0.0498 (6)
C13−0.3213 (5)0.03545 (14)0.87194 (18)0.0521 (6)
H13A−0.47400.03160.83230.063*
H13B−0.26510.08630.87410.063*
H13C−0.35700.01890.93520.063*
C140.2511 (6)−0.03980 (16)0.6006 (2)0.0683 (8)
H14A0.26900.01200.58530.082*
H14B0.1270−0.06220.55760.082*
H14C0.4135−0.06430.59470.082*
N1−0.1132 (3)0.06164 (9)0.68444 (12)0.0371 (4)
H1N−0.25730.05710.65360.044*
O10.3127 (3)0.12146 (10)0.67758 (12)0.0478 (4)
O2−0.0692 (4)0.17882 (10)0.59926 (12)0.0576 (5)
S10.04474 (9)0.13941 (3)0.67748 (3)0.0358 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0330 (10)0.0277 (9)0.0476 (11)−0.0044 (7)0.0082 (8)0.0010 (8)
C20.0383 (11)0.0382 (12)0.0794 (17)0.0005 (9)0.0079 (11)−0.0024 (11)
C30.0519 (14)0.0440 (14)0.109 (2)0.0011 (11)0.0324 (16)−0.0178 (14)
C40.0731 (18)0.0538 (15)0.0749 (19)−0.0173 (14)0.0336 (15)−0.0237 (14)
C50.0697 (16)0.0576 (15)0.0500 (14)−0.0172 (13)0.0086 (12)−0.0106 (12)
C60.0437 (11)0.0425 (12)0.0500 (12)−0.0010 (9)0.0044 (9)−0.0046 (9)
C70.0377 (10)0.0300 (10)0.0437 (11)−0.0023 (8)−0.0068 (8)−0.0014 (8)
C80.0421 (11)0.0398 (11)0.0490 (12)−0.0076 (9)−0.0027 (9)0.0031 (9)
C90.0698 (17)0.0511 (14)0.0614 (16)−0.0060 (12)−0.0037 (12)0.0180 (12)
C100.088 (2)0.0455 (14)0.085 (2)0.0092 (14)−0.0165 (17)0.0183 (14)
C110.0701 (18)0.0419 (14)0.091 (2)0.0179 (13)−0.0075 (15)−0.0061 (14)
C120.0523 (13)0.0388 (12)0.0579 (14)0.0040 (10)−0.0045 (10)−0.0108 (10)
C130.0489 (13)0.0557 (14)0.0523 (13)−0.0057 (11)0.0106 (10)0.0054 (11)
C140.0828 (19)0.0587 (16)0.0638 (17)0.0143 (14)0.0110 (14)−0.0211 (13)
N10.0333 (8)0.0372 (9)0.0402 (9)−0.0016 (7)−0.0069 (7)0.0004 (7)
O10.0331 (8)0.0539 (9)0.0569 (10)−0.0006 (7)0.0104 (7)−0.0048 (7)
O20.0690 (11)0.0563 (10)0.0473 (9)0.0011 (8)−0.0016 (8)0.0193 (8)
S10.0351 (3)0.0364 (3)0.0361 (3)−0.00027 (18)0.0040 (2)0.00487 (18)

Geometric parameters (Å, °)

C1—C61.376 (3)C9—C101.377 (5)
C1—C21.386 (3)C9—H90.9300
C1—S11.765 (2)C10—C111.368 (5)
C2—C31.388 (4)C10—H100.9300
C2—H20.9300C11—C121.397 (4)
C3—C41.369 (5)C11—H110.9300
C3—H30.9300C12—C141.508 (4)
C4—C51.363 (4)C13—H13A0.9600
C4—H40.9300C13—H13B0.9600
C5—C61.386 (3)C13—H13C0.9600
C5—H50.9300C14—H14A0.9600
C6—H60.9300C14—H14B0.9600
C7—C81.397 (3)C14—H14C0.9600
C7—C121.398 (3)N1—S11.6263 (17)
C7—N11.441 (3)N1—H1N0.8600
C8—C91.386 (3)O1—S11.4334 (16)
C8—C131.505 (3)O2—S11.4221 (17)
C6—C1—C2120.9 (2)C9—C10—H10120.0
C6—C1—S1119.41 (16)C10—C11—C12121.7 (3)
C2—C1—S1119.71 (18)C10—C11—H11119.2
C1—C2—C3118.3 (3)C12—C11—H11119.2
C1—C2—H2120.8C11—C12—C7117.3 (3)
C3—C2—H2120.8C11—C12—C14119.8 (2)
C4—C3—C2120.8 (2)C7—C12—C14122.9 (2)
C4—C3—H3119.6C8—C13—H13A109.5
C2—C3—H3119.6C8—C13—H13B109.5
C5—C4—C3120.5 (3)H13A—C13—H13B109.5
C5—C4—H4119.8C8—C13—H13C109.5
C3—C4—H4119.8H13A—C13—H13C109.5
C4—C5—C6120.0 (3)H13B—C13—H13C109.5
C4—C5—H5120.0C12—C14—H14A109.5
C6—C5—H5120.0C12—C14—H14B109.5
C1—C6—C5119.5 (2)H14A—C14—H14B109.5
C1—C6—H6120.2C12—C14—H14C109.5
C5—C6—H6120.2H14A—C14—H14C109.5
C8—C7—C12121.8 (2)H14B—C14—H14C109.5
C8—C7—N1119.69 (19)C7—N1—S1121.72 (13)
C12—C7—N1118.5 (2)C7—N1—H1N119.1
C9—C8—C7118.2 (2)S1—N1—H1N119.1
C9—C8—C13119.5 (2)O2—S1—O1119.85 (11)
C7—C8—C13122.3 (2)O2—S1—N1105.89 (10)
C10—C9—C8121.0 (3)O1—S1—N1107.55 (10)
C10—C9—H9119.5O2—S1—C1107.95 (11)
C8—C9—H9119.5O1—S1—C1106.89 (10)
C11—C10—C9120.0 (3)N1—S1—C1108.28 (9)
C11—C10—H10120.0
C6—C1—C2—C3−0.4 (3)C10—C11—C12—C14−176.0 (3)
S1—C1—C2—C3178.70 (18)C8—C7—C12—C11−3.2 (3)
C1—C2—C3—C40.9 (4)N1—C7—C12—C11179.3 (2)
C2—C3—C4—C5−1.1 (4)C8—C7—C12—C14174.0 (2)
C3—C4—C5—C60.7 (4)N1—C7—C12—C14−3.5 (3)
C2—C1—C6—C50.1 (3)C8—C7—N1—S199.9 (2)
S1—C1—C6—C5−179.04 (18)C12—C7—N1—S1−82.5 (2)
C4—C5—C6—C1−0.2 (4)C7—N1—S1—O2165.74 (17)
C12—C7—C8—C92.6 (3)C7—N1—S1—O136.48 (19)
N1—C7—C8—C9−179.8 (2)C7—N1—S1—C1−78.70 (18)
C12—C7—C8—C13−175.8 (2)C6—C1—S1—O2−153.98 (17)
N1—C7—C8—C131.8 (3)C2—C1—S1—O226.9 (2)
C7—C8—C9—C10−0.1 (4)C6—C1—S1—O1−23.8 (2)
C13—C8—C9—C10178.3 (3)C2—C1—S1—O1157.06 (17)
C8—C9—C10—C11−1.7 (5)C6—C1—S1—N191.81 (18)
C9—C10—C11—C121.2 (5)C2—C1—S1—N1−87.33 (18)
C10—C11—C12—C71.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.553.179 (2)131
C5—H5···O2ii0.932.573.229 (3)129

Symmetry codes: (i) x−1, y, z; (ii) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2760).

References

  • Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  • Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [PubMed]
  • Gowda, B. T., Babitha, K. S., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007). Acta Cryst. E63, o3361.
  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1692. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3325.
  • Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.
  • Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography