PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): i55–i56.
Published online 2008 August 9. doi:  10.1107/S1600536808023477
PMCID: PMC2960640

Dicaesium hexa­mercury hepta­sulfide

Abstract

The title compound, Cs2Hg6S7, crystallizes in a new structure type that is closely related to that of K2Zn6O7. The structure comprises a three-dimensional mercury sulfide network that is composed of channels. These channels, which are along [001], are of two different diameters. The crystal structure contains one Cs, two Hg, and three S atoms in the asymmetric unit. The Cs, one Hg, and one S atom are at sites of symmetry m, whereas a second S atom is at a site of symmetry 2mm. The Hg atoms are bound to the S atoms in both three- and four-coordinate geometries. The caesium cations occupy the central spaces of the larger diameter channels and exhibit a coordination number of 7.

Related literature

For literature on related alkali-metal mercury sulfides, see: Sommer & Hoppe (1978 [triangle]) for A 6HgS4 (A = K, Rb); Klepp & Prager (1992 [triangle]) for A 2HgS2 (A = Na, K); Klepp (1992 [triangle]) for Na2Hg3S4; Kanatzidis & Park (1990 [triangle]) for K2Hg3S4 and K2Hg6S7. For literature on other compounds with Hg—S or Cs—S bonds, see: Gulay et al. (2002 [triangle]); Rad & Hoppe (1981 [triangle]); Iwasaki (1973 [triangle]); Kinoshita et al. (1985 [triangle]); Bronger & Hendriks (1980 [triangle]). The isoformular, but not isotypic, compound K2Zn6O7 was reported by Wambach & Hoppe (1978 [triangle]). For synthetic details, see: Sunshine et al. (1987 [triangle]). For computational details, see: Brown & Altermatt (1985 [triangle]); Gelato & Parthé (1987 [triangle]); Le Page (1988 [triangle]); Brese & O’Keeffe (1991 [triangle]); Spek (2003 [triangle]).

Experimental

Crystal data

  • Cs2Hg6S7
  • M r = 1693.78
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-64-00i55-efi1.jpg
  • a = 14.063 (3) Å
  • c = 4.1895 (18) Å
  • V = 828.6 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 60.56 mm−1
  • T = 215 (2) K
  • 0.44 × 0.06 × 0.04 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: face-indexed, numerical (SADABS; Sheldrick, 2006 [triangle]) T min = 0.011, T max = 0.131
  • 8644 measured reflections
  • 956 independent reflections
  • 907 reflections with I > 2σ(I)
  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.082
  • S = 1.23
  • 956 reflections
  • 43 parameters
  • 1 restraint
  • .
  • Δρmax = 2.17 e Å−3
  • Δρmin = −2.29 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 389 Friedel pairs
  • Flack parameter: 0.00 (3)

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: APEX2 (Bruker, 2006 [triangle]); data reduction: SAINT (Bruker, 2006 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: CrystalMaker (Palmer, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808023477/wm2184sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023477/wm2184Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by the US Department of Energy, Basic Energy Sciences Grant ER-15522.

supplementary crystallographic information

Comment

Four structure types are found in alkali metal-mercury-sulfur ternary systems: A6HgS4 (A = K, Rb) exhibit discrete HgS4 tetrahedra with intercalated alkali-metal cations (Sommer & Hoppe, 1978). A2HgS2 (A = Na, K) possess nearly linear HgS2 units with alkali-metal cations occupying the voids (Klepp & Prager, 1992). The compounds Na2Hg3S4 (Klepp, 1992) and K2Hg3S4 (Kanatzidis & Park, 1990) feature infinite [Hg3S4]2- units parallel to (100) separated by alkali-metal cations. K2Hg6S7 has a three-dimensional mercury sulfide network composed of two types of channels, with the potassium cations occupying the spaces in the larger-diameter channels (Kanatzidis & Park, 1990).

Fig. 1 shows the unit cell of Cs2Hg6S7. Similar to K2Hg6S7, there is a three-dimensional mercury sulfide network containing two types of channels along [001]. There are two types of coordination geometries for the mercury atoms: Hg1 is four-coordinate with a distorted tetrahedral geometry and Hg2 is three-coordinate with a T-shaped planar geometry. The Hg1—S bond distances of 2.488 (4)-2.775 (2) Å are comparable to those of 2.345 (8)-2.718 (4) Å in K2Hg6S7. The Hg2—S bond distances are 2.367 (7), 2.377 (5), and 3.004 (7) Å. In K2Hg6S7, the Hg2 atom is considered to have a two-coordinate, nearly linear geometry. The Hg2 atom in Cs2Hg6S7 can also be viewed as having an approximately linear bonding environment if the Hg2—S coordination distance of 3.004 (7) Å is considered to be non-bonding. However, there are some examples in the literature of longer than expected Hg—S bonds in extended solid-state structures, including 2.92 (1) Å in Hg4SiS6 (Gulay et al., 2002), and 2.98 (1) Å in BaHgS2 (Rad & Hoppe, 1981). Long Hg—S bond distances of greater than 2.9 Å are more common in coordination compounds, including 2.965 (4) Å in Hg(S2CNEt2)2 (Iwasaki, 1973), 3.137 (6) Å in Hg2(S2CNEt2)4 (Iwasaki, 1973), and 2.991 (3) Å and 3.322 (4) Å in [CoHg(SCN)4{P(C6H5)3}2]2 (Kinoshita et al., 1985). Therefore, we consider the Hg2 atom in Cs2Hg6S7 to be three-coordinate with a T-shaped planar geometry. The Cs1 atoms, found in the centers of the larger-diameter channels, are seven-coordinate, with Cs—S distances of 3.526 (5)-3.627 (7) Å, as compared to 3.595 (7)-3.701 (6) Å in Cs2Zn3S4 (Bronger & Hendriks, 1980).

Because there is no S—S bonding in Cs2Hg6S7, a formal oxidation state of -II can be assigned to the S atoms. Bond valence sums (Brown & Altermatt, 1985; Brese & O'Keeffe, 1991) of Hg1 = 1.95, Hg2 = 1.84, and Cs1 = 1.13 confirm the formal oxidation states of +II for both Hg atoms, and +I for Cs.

Although they possess structural similarities, Cs2Hg6S7 and K2Hg6S7 are not isostructural. Cs2Hg6S7 belongs to space group P42nm and K2Hg6S7 belongs to space group P421m. Another related compound is K2Zn6O7, which crystallizes in space group P42nm (Wambach & Hoppe, 1978). However, the ADDSYM algorithm (Le Page, 1988) in PLATON (Spek, 2003) suggests that K2Zn6O7 properly belongs to space group P42/mnm. Apparently, Cs2Hg6S7 is not isostructural to K2Zn6O7 and instead crystallizes in a new structure type.

Experimental

Cs2Hg6S7 was initially obtained in an attempt to produce a Cs/Hg/U/S quaternary phase. Cs2Hg6S7 was then synthesized rationally from a solid-state reaction of Cs2S3 (0.13 mmol), HgS (Alfa Aesar, 0.21 mmol), and S (Mallinckrodt, 99.6%, 0.44 mmol). CsI (Aldrich, 99.9%, 0.34 mmol) was added to aid in the crystallization of the final product. The Cs2S3 reactive flux (Sunshine et al., 1987) was prepared by the stoichiometric reaction of Cs (Strem Chemicals, 99.5%) and S in liquid NH3 at 194 K. The reactants were loaded into a fused-silica tube under an Ar atmosphere in a glove box. The tube was evacuated to 10 -4 Torr, sealed, and then placed in a computer-controlled furnace. The sample was heated to 1123 K in 24 hours, kept at 1123 K for 120 h, cooled at 5 K h-1 to 473 K, and then cooled to 293 K in 2 hours. The resulting black needles were washed with N,N-dimethylformamide. The yield was about 80% based on Hg.

Refinement

The structure was standardized by means of the program STRUCTURE TIDY (Gelato & Parthé, 1987). The highest peak is 1.60 Å from atom Hg1 and the deepest hole is 1.03 Å from atom S3.

Figures

Fig. 1.
A view down [001] of the unit cell of Cs2Hg6S7, with displacement ellipsoids at the 95% probability level.

Crystal data

Cs2Hg6S7Z = 2
Mr = 1693.78F000 = 1404
Tetragonal, P42nmDx = 6.789 Mg m3
Hall symbol: P 4n -2nMo Kα radiation λ = 0.71073 Å
a = 14.063 (3) ÅCell parameters from 5893 reflections
b = 14.063 (3) Åθ = 2.9–28.1º
c = 4.1895 (18) ŵ = 60.56 mm1
α = 90ºT = 215 (2) K
β = 90ºNeedle, black
γ = 90º0.44 × 0.06 × 0.04 mm
V = 828.6 (4) Å3

Data collection

Bruker SMART 1000 CCD diffractometer956 independent reflections
Radiation source: fine-focus sealed tube907 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.052
T = 215(2) Kθmax = 28.1º
ω scansθmin = 2.1º
Absorption correction: numerical(SADABS; Sheldrick, 2006)h = −17→17
Tmin = 0.011, Tmax = 0.131k = −17→17
8644 measured reflectionsl = −5→5

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.0235P)2 + 40.9819P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.034(Δ/σ)max < 0.001
wR(F2) = 0.082Δρmax = 2.17 e Å3
S = 1.23Δρmin = −2.29 e Å3
956 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
43 parametersExtinction coefficient: 0.00320 (17)
1 restraintAbsolute structure: Flack (1983), 389 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.00 (3)

Special details

Experimental. The absorption correction program used the face indices and crystal dimensions that were supplied.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Hg10.15251 (5)0.57410 (5)0.22339 (19)0.0216 (2)
Hg20.09922 (5)0.09922 (5)0.3162 (3)0.0189 (3)
Cs10.33108 (8)0.33108 (8)0.2149 (5)0.0197 (3)
S10.0207 (3)0.6920 (3)0.2220 (13)0.0151 (7)
S20.00000.00000.000 (2)0.0193 (19)
S30.1828 (3)0.1828 (3)0.7187 (18)0.0153 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Hg10.0248 (4)0.0215 (4)0.0184 (4)0.0052 (3)0.0002 (3)−0.0002 (3)
Hg20.0180 (3)0.0180 (3)0.0206 (5)−0.0015 (4)−0.0032 (3)−0.0032 (3)
Cs10.0216 (5)0.0216 (5)0.0157 (7)0.0037 (5)−0.0013 (6)−0.0013 (6)
S10.0134 (18)0.0160 (18)0.0158 (18)−0.0006 (14)−0.0002 (19)−0.0017 (19)
S20.024 (3)0.024 (3)0.011 (4)−0.006 (4)0.0000.000
S30.0154 (15)0.0154 (15)0.015 (2)0.002 (2)−0.003 (2)−0.003 (2)

Geometric parameters (Å, °)

Hg1—S12.488 (4)Cs1—S2iv3.566 (4)
Hg1—S1i2.540 (5)Cs1—S3v3.609 (7)
Hg1—S1ii2.549 (5)Cs1—S33.627 (7)
Hg1—S3iii2.7754 (15)Cs1—Hg1viii4.1659 (17)
Hg1—Cs1iv4.1659 (17)Cs1—Hg1ii4.1659 (17)
Hg1—Cs1iii4.2013 (18)Cs1—Cs1x4.1895 (18)
Hg1—Cs14.2412 (12)Cs1—Cs1v4.1895 (18)
Hg2—S32.367 (7)Cs1—Hg1i4.2013 (18)
Hg2—S22.377 (5)S1—Hg1iii2.540 (5)
Hg2—S3v3.004 (7)S1—Hg1iv2.549 (5)
Hg2—Cs1i4.2392 (19)S1—Cs1iv3.526 (5)
Hg2—Cs1vi4.2392 (18)S1—Cs1iii3.561 (5)
Hg2—Cs14.631 (2)S2—Hg2xi2.377 (5)
Hg2—Cs1ii4.640 (2)S2—Cs1ii3.566 (4)
Hg2—Cs1vii4.640 (2)S2—Cs1vii3.566 (4)
Cs1—S1viii3.526 (5)S3—Hg1ix2.7754 (14)
Cs1—S1ii3.526 (5)S3—Hg1i2.7754 (14)
Cs1—S1ix3.561 (5)S3—Hg2x3.004 (7)
Cs1—S1i3.561 (5)S3—Cs1x3.609 (7)
S1—Hg1—S1i121.0 (2)S1ix—Cs1—S2iv77.06 (11)
S1—Hg1—S1ii120.6 (2)S1i—Cs1—S2iv77.06 (11)
S1i—Hg1—S1ii110.83 (15)S1viii—Cs1—S3v71.57 (10)
S1—Hg1—S3iii104.78 (15)S1ii—Cs1—S3v71.57 (10)
S1i—Hg1—S3iii96.43 (18)S1ix—Cs1—S3v111.39 (9)
S1ii—Hg1—S3iii95.74 (17)S1i—Cs1—S3v111.39 (9)
S1—Hg1—Cs1iv57.59 (10)S2iv—Cs1—S3v164.39 (19)
S1i—Hg1—Cs1iv92.09 (11)S1viii—Cs1—S3111.21 (9)
S1ii—Hg1—Cs1iv148.09 (10)S1ii—Cs1—S3111.21 (9)
S3iii—Hg1—Cs1iv58.64 (13)S1ix—Cs1—S370.96 (10)
S1—Hg1—Cs1iii57.74 (11)S1i—Cs1—S370.96 (10)
S1i—Hg1—Cs1iii148.92 (10)S2iv—Cs1—S3124.85 (19)
S1ii—Hg1—Cs1iii91.15 (11)S3v—Cs1—S370.76 (11)
S3iii—Hg1—Cs1iii58.46 (14)Hg1viii—Cs1—Hg1ii81.48 (4)
Cs1iv—Hg1—Cs1iii60.09 (3)S1viii—Cs1—Hg1i146.72 (8)
S1—Hg1—Cs1168.11 (10)S1ii—Cs1—Hg1i77.73 (8)
S1i—Hg1—Cs156.93 (10)S1ix—Cs1—Hg1i103.37 (9)
S1ii—Hg1—Cs156.13 (10)S1i—Cs1—Hg1i36.20 (6)
S3iii—Hg1—Cs187.09 (12)S2iv—Cs1—Hg1i111.51 (11)
Cs1iv—Hg1—Cs1132.09 (4)S3v—Cs1—Hg1i80.02 (9)
Cs1iii—Hg1—Cs1131.02 (4)S3—Cs1—Hg1i40.70 (2)
S3—Hg2—S2168.5 (3)Hg1viii—Cs1—Hg1i110.24 (4)
S3—Hg2—S3v101.9 (2)Hg1ii—Cs1—Hg1i60.09 (3)
S2—Hg2—S3v89.7 (2)Cs1x—Cs1—Hg1i59.53 (3)
S3—Hg2—Cs1i92.64 (11)Cs1v—Cs1—Hg1i120.47 (3)
S2—Hg2—Cs1i80.40 (11)Hg1—S1—Hg1iii104.31 (17)
S3v—Hg2—Cs1i125.85 (4)Hg1—S1—Hg1iv104.03 (17)
S3—Hg2—Cs1vi92.64 (11)Hg1iii—S1—Hg1iv110.83 (15)
S2—Hg2—Cs1vi80.40 (11)Hg1—S1—Cs1iv85.86 (12)
S3v—Hg2—Cs1vi125.85 (4)Hg1iii—S1—Cs1iv155.98 (17)
Cs1i—Hg2—Cs1vi104.84 (5)Hg1iv—S1—Cs1iv86.99 (14)
S3—Hg2—Cs150.68 (17)Hg1—S1—Cs1iii86.05 (12)
S2—Hg2—Cs1140.87 (19)Hg1iii—S1—Cs1iii86.37 (14)
S3v—Hg2—Cs151.17 (12)Hg1iv—S1—Cs1iii156.55 (16)
Cs1i—Hg2—Cs1119.97 (2)Cs1iv—S1—Cs1iii72.47 (8)
Cs1vi—Hg2—Cs1119.97 (2)Hg2—S2—Hg2xi112.2 (4)
S3—Hg2—Cs1ii133.26 (3)Hg2—S2—Cs1ii100.76 (3)
S2—Hg2—Cs1ii49.02 (6)Hg2xi—S2—Cs1ii100.76 (3)
S3v—Hg2—Cs1ii77.46 (8)Hg2—S2—Cs1vii100.76 (3)
Cs1i—Hg2—Cs1ii56.09 (3)Hg2xi—S2—Cs1vii100.76 (3)
Cs1vi—Hg2—Cs1ii126.15 (3)Cs1ii—S2—Cs1vii140.9 (3)
Cs1—Hg2—Cs1ii111.95 (3)Hg2—S3—Hg1ix98.40 (15)
S3—Hg2—Cs1vii133.26 (3)Hg2—S3—Hg1i98.40 (15)
S2—Hg2—Cs1vii49.02 (6)Hg1ix—S3—Hg1i156.8 (2)
S3v—Hg2—Cs1vii77.46 (8)Hg2—S3—Hg2x101.9 (2)
Cs1i—Hg2—Cs1vii126.15 (3)Hg1ix—S3—Hg2x96.04 (16)
Cs1vi—Hg2—Cs1vii56.09 (3)Hg1i—S3—Hg2x96.04 (16)
Cs1—Hg2—Cs1vii111.95 (3)Hg2—S3—Cs1x169.7 (3)
Cs1ii—Hg2—Cs1vii92.79 (5)Hg1ix—S3—Cs1x80.31 (13)
S1viii—Cs1—S1ii108.22 (17)Hg1i—S3—Cs1x80.31 (13)
S1viii—Cs1—S1ix72.47 (8)Hg2x—S3—Cs1x88.40 (19)
S1ii—Cs1—S1ix176.94 (13)Hg2—S3—Cs199.0 (2)
S1viii—Cs1—S1i176.94 (13)Hg1ix—S3—Cs180.83 (13)
S1ii—Cs1—S1i72.47 (8)Hg1i—S3—Cs180.83 (13)
S1ix—Cs1—S1i106.68 (16)Hg2x—S3—Cs1159.2 (2)
S1viii—Cs1—S2iv99.89 (11)Cs1x—S3—Cs170.76 (11)
S1ii—Cs1—S2iv99.89 (11)

Symmetry codes: (i) y−1/2, −x+1/2, z+1/2; (ii) y−1/2, −x+1/2, z−1/2; (iii) −y+1/2, x+1/2, z−1/2; (iv) −y+1/2, x+1/2, z+1/2; (v) x, y, z−1; (vi) −y+1/2, x−1/2, z+1/2; (vii) −y+1/2, x−1/2, z−1/2; (viii) −x+1/2, y−1/2, z−1/2; (ix) −x+1/2, y−1/2, z+1/2; (x) x, y, z+1; (xi) −x, −y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2184).

References

  • Brese, N. E. & O’Keeffe, M. (1991). Acta Cryst. B47, 192–197.
  • Bronger, W. & Hendriks, U. (1980). Rev. Chim. Miner.17, 555–560.
  • Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  • Bruker (2003). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst.20, 139–143.
  • Gulay, L. D., Olekseyuk, I. D. & Parasyuk, O. V. (2002). J. Alloys Compd.347, 115–120.
  • Iwasaki, H. (1973). Acta Cryst. B29, 2115–2124.
  • Kanatzidis, M. G. & Park, Y. (1990). Chem. Mater.2, 99–101.
  • Kinoshita, H., Shimoi, M. & Ouchi, A. (1985). Bull. Chem. Soc. Jpn, 58, 1304–1307.
  • Klepp, K. O. (1992). J. Alloys Compd.182, 281–288.
  • Klepp, K. O. & Prager, K. (1992). Z. Naturforsch. Teil B, 47, 491–496.
  • Le Page, Y. (1988). J. Appl. Cryst.21, 983–984.
  • Palmer, D. (2008). CrystalMaker CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.
  • Rad, H. D. & Hoppe, R. (1981). Z. Anorg. Allg. Chem.483, 18–25.
  • Sheldrick, G. M. (2006). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sommer, H. & Hoppe, R. (1978). Z. Anorg. Allg. Chem.443, 201–211.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Sunshine, S. A., Kang, D. & Ibers, J. A. (1987). J. Am. Chem. Soc.109, 6202–6204.
  • Wambach, K.-R. & Hoppe, R. (1978). Z. Anorg. Allg. Chem.445, 91–101.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography