PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1796.
Published online 2008 August 20. doi:  10.1107/S1600536808026020
PMCID: PMC2960637

(±)-Ethyl 6,7-dimeth­oxy-1-(1H-pyrrol-2-yl)-1,2,3,4-tetra­hydroisoquinoline-2-car­boxyl­ate

Abstract

In the title compound, C18H22N2O4, the dihedral angle between the pyrrolyl and quinolinyl fragments is 68.97 (2)°. Two non-classical intra­molecular C—H(...)O hydrogen bonds stabilize the mol­ecular geometry. In the crystal structure, mol­ecules form infinite chains via moderate inter­molecular N—H(...)O(CH3) hydrogen bonds.

Related literature

For related crystal structures, see: Kolev et al. (2007 [triangle]); Petrova et al. (2007 [triangle]); Petrova et al. (2005 [triangle]); Rajnikant et al. (2002 [triangle]); Shishkina et al. (2005 [triangle]); Venkov et al. (2004 [triangle]); Vincente et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1796-scheme1.jpg

Experimental

Crystal data

  • C18H22N2O4
  • M r = 330.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1796-efi3.jpg
  • a = 8.403 (3) Å
  • b = 17.046 (3) Å
  • c = 11.6486 (13) Å
  • β = 95.260 (13)°
  • V = 1661.5 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 290 (2) K
  • 0.32 × 0.32 × 0.30 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 6852 measured reflections
  • 3263 independent reflections
  • 1828 reflections with I > 2σ(I)
  • R int = 0.110
  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065
  • wR(F 2) = 0.156
  • S = 1.07
  • 3263 reflections
  • 218 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808026020/pv2093sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026020/pv2093Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Science Fund of Bulgaria (Project TK357&TK358).

supplementary crystallographic information

Comment

As part of our research program on tetrahydroisoquinolines (Kolev et al., 2007; Petrova et al., 2007; Petrova et al., 2005) the crystal structure of the title compound,(I), has been solved. The molecule possesses regular geometry with two nearly planar ring systems. The r.m.s. deviation of pyrrolyl and quinolin-2(1H)-fragments is 0.161 (7) Å and 0.002 (2) Å, respectively, and the dihedral angle between their mean planes is 68.97 (2)°. The geometrical parameters of both rings are comparable to those observed in other quinoline derivatives (Rajnikant et al., 2002; Vincente et al., 2005; Shishkina et al., 2005). Two non-classsical intramolecular hydrogen bonds (C7—H7···O4 and C8—H8···O3) stabilize the molecular geometry. Only the methoxy O atoms are realised as hydrogen bond acceptors and together with the only possible donor form a bifurcated hydrogen bond of the N—H···(O,O) type. Thus neighboring molecules are oriented head-to-tail and connected to form infinite chains along the b-axis (Fig. 2).

Experimental

The title compound has been obtained following the procedure described by Venkov et al., 2004. Colorless crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation from ethanol/water (2:1) solution.

Refinement

All H atoms were placed in idealized positions (C—Hmethyl = 0.96 Å, C—Hmethylen = 0.97 Å, C—Haromatic = 0.93Å and N—H = 0.86 Å) and were constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(Cmethyl) or Uiso(H) = 1.2Ueq(Caromatic, Cmethylen ~ or N). The high Rint value (0.11) and relatively low ratio (0.55) of observed to unique reflections may be a result of the poor diffraction quality of the crystal.

Figures

Fig. 1.
View of the structure and the atom-numbering scheme of (I) showing 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
Fig. 2.
A view of the molecular packing in (I). Hydrogen bonds are represented by dotted lines. H atoms not involved in hydrogen bonding interactions have been omitted. [Symmetry code: (i) -x, -1/2 + y, 1/2 - z].

Crystal data

C18H22N2O4F000 = 704
Mr = 330.38Dx = 1.321 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 22 reflections
a = 8.403 (3) Åθ = 18.3–18.8º
b = 17.046 (3) ŵ = 0.09 mm1
c = 11.6486 (13) ÅT = 290 (2) K
β = 95.260 (13)ºPrism, colorless
V = 1661.5 (7) Å30.32 × 0.32 × 0.30 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.110
Radiation source: fine-focus sealed tubeθmax = 26.0º
Monochromator: graphiteθmin = 2.1º
T = 290(2) Kh = 0→10
Nonprofiled ω/2θ scansk = −20→20
Absorption correction: nonel = −14→14
6852 measured reflections3 standard reflections
3263 independent reflections every 120 min
1828 reflections with I > 2σ(I) intensity decay: −1%

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.065  w = 1/[σ2(Fo2) + (0.0293P)2 + 2.0348P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.156(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.21 e Å3
3263 reflectionsΔρmin = −0.20 e Å3
218 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0075 (10)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.2084 (3)0.63581 (14)0.3413 (2)0.0474 (7)
O20.3254 (3)0.65266 (14)0.1467 (2)0.0443 (7)
O30.2237 (3)0.20530 (14)0.1157 (2)0.0476 (7)
O40.2206 (3)0.23765 (16)0.3033 (2)0.0573 (8)
N10.0630 (3)0.30217 (16)0.1633 (2)0.0336 (7)
C20.2399 (4)0.5223 (2)0.0832 (3)0.0339 (8)
H20.28150.52900.01260.041*
C19−0.1547 (4)0.37433 (19)0.2412 (3)0.0339 (8)
C60.1037 (4)0.44139 (19)0.2113 (3)0.0329 (8)
C30.2542 (4)0.58174 (19)0.1623 (3)0.0337 (8)
C13−0.2492 (4)0.4391 (2)0.2366 (3)0.0415 (9)
H13−0.21540.49060.22770.050*
C70.0237 (4)0.36515 (18)0.2422 (3)0.0347 (8)
H70.06590.35030.32040.042*
C90.1515 (4)0.3882 (2)0.0146 (3)0.0408 (9)
H9A0.25640.36570.00850.049*
H9B0.11570.4115−0.05930.049*
C50.1184 (4)0.5026 (2)0.2922 (3)0.0352 (8)
H50.07800.49560.36320.042*
N3−0.2512 (3)0.31109 (17)0.2555 (2)0.0418 (8)
H3−0.21970.26310.26160.050*
C100.1731 (4)0.2482 (2)0.2028 (3)0.0395 (9)
C40.1907 (4)0.5724 (2)0.2694 (3)0.0349 (8)
C180.4219 (5)0.6587 (2)0.0526 (3)0.0555 (11)
H18A0.46480.71090.04990.083*
H18B0.35800.6479−0.01820.083*
H18C0.50800.62160.06260.083*
C10.1642 (4)0.45151 (19)0.1057 (3)0.0323 (8)
C15−0.4056 (5)0.3361 (2)0.2588 (3)0.0498 (10)
H15−0.49360.30420.26720.060*
C80.0366 (4)0.3237 (2)0.0414 (3)0.0356 (8)
H8A−0.07250.34150.02400.043*
H8B0.05290.2782−0.00610.043*
C170.1649 (5)0.6268 (2)0.4555 (3)0.0527 (11)
H17A0.18160.67540.49650.079*
H17B0.22940.58650.49410.079*
H17C0.05430.61230.45320.079*
C14−0.4078 (5)0.4148 (2)0.2476 (3)0.0491 (10)
H14−0.49710.44710.24710.059*
C110.3387 (6)0.1452 (3)0.1464 (4)0.0675 (14)
H11A0.29720.10940.20100.081*
H11B0.43610.16850.18240.081*
C120.3725 (6)0.1029 (3)0.0433 (4)0.0812 (16)
H12A0.45080.06300.06330.122*
H12B0.41290.1387−0.01060.122*
H12C0.27610.07900.00900.122*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0666 (18)0.0391 (15)0.0374 (14)−0.0089 (13)0.0099 (13)−0.0089 (12)
O20.0514 (15)0.0414 (15)0.0412 (14)−0.0117 (12)0.0110 (12)−0.0012 (12)
O30.0551 (17)0.0418 (15)0.0455 (15)0.0201 (13)0.0028 (13)−0.0023 (13)
O40.073 (2)0.0578 (18)0.0403 (16)0.0254 (15)0.0029 (14)0.0079 (14)
N10.0403 (17)0.0308 (16)0.0298 (14)0.0073 (14)0.0035 (13)0.0008 (13)
C20.0360 (19)0.039 (2)0.0275 (17)0.0023 (16)0.0060 (15)0.0038 (15)
C190.043 (2)0.0306 (19)0.0297 (18)−0.0011 (16)0.0094 (16)0.0005 (15)
C60.0326 (19)0.0323 (19)0.0339 (18)0.0051 (15)0.0040 (16)−0.0011 (15)
C30.0330 (19)0.0326 (19)0.0351 (19)−0.0019 (15)0.0009 (16)0.0030 (16)
C130.046 (2)0.037 (2)0.043 (2)0.0064 (18)0.0088 (18)0.0034 (17)
C70.044 (2)0.0297 (18)0.0317 (18)0.0025 (16)0.0092 (16)0.0011 (15)
C90.047 (2)0.042 (2)0.0335 (19)0.0006 (18)0.0074 (18)−0.0034 (17)
C50.037 (2)0.041 (2)0.0289 (17)0.0009 (17)0.0065 (15)0.0007 (17)
N30.0453 (19)0.0350 (17)0.0460 (18)−0.0009 (15)0.0084 (15)0.0054 (15)
C100.043 (2)0.037 (2)0.039 (2)0.0001 (18)0.0094 (18)0.0029 (17)
C40.041 (2)0.0339 (19)0.0297 (18)0.0008 (16)0.0014 (16)−0.0043 (16)
C180.053 (3)0.064 (3)0.052 (2)−0.016 (2)0.016 (2)0.000 (2)
C10.0322 (19)0.0352 (19)0.0299 (17)0.0062 (15)0.0043 (15)0.0019 (15)
C150.041 (2)0.060 (3)0.050 (2)−0.009 (2)0.0124 (19)−0.001 (2)
C80.041 (2)0.0345 (19)0.0306 (18)0.0032 (16)−0.0010 (15)−0.0055 (16)
C170.067 (3)0.054 (3)0.038 (2)−0.003 (2)0.009 (2)−0.011 (2)
C140.044 (2)0.057 (3)0.047 (2)0.013 (2)0.009 (2)0.000 (2)
C110.077 (3)0.052 (3)0.073 (3)0.030 (2)0.006 (3)−0.004 (2)
C120.083 (4)0.076 (3)0.084 (4)0.035 (3)0.004 (3)−0.023 (3)

Geometric parameters (Å, °)

O1—C41.367 (4)C9—C81.515 (5)
O1—C171.420 (4)C9—H9A0.9700
O2—C31.369 (4)C9—H9B0.9700
O2—C181.426 (4)C5—C41.374 (5)
O3—C101.350 (4)C5—H50.9300
O3—C111.431 (5)N3—C151.369 (5)
O4—C101.216 (4)N3—H30.8600
N1—C101.355 (4)C18—H18A0.9600
N1—C81.464 (4)C18—H18B0.9600
N1—C71.470 (4)C18—H18C0.9600
C2—C31.367 (5)C15—C141.349 (5)
C2—C11.399 (4)C15—H150.9300
C2—H20.9300C8—H8A0.9700
C19—C131.359 (5)C8—H8B0.9700
C19—N31.368 (4)C17—H17A0.9600
C19—C71.506 (5)C17—H17B0.9600
C6—C11.385 (4)C17—H17C0.9600
C6—C51.403 (4)C14—H140.9300
C6—C71.521 (4)C11—C121.451 (6)
C3—C41.410 (4)C11—H11A0.9700
C13—C141.413 (5)C11—H11B0.9700
C13—H130.9300C12—H12A0.9600
C7—H70.9800C12—H12B0.9600
C9—C11.510 (4)C12—H12C0.9600
C4—O1—C17117.8 (3)O1—C4—C5126.3 (3)
C3—O2—C18116.9 (3)O1—C4—C3115.1 (3)
C10—O3—C11116.9 (3)C5—C4—C3118.6 (3)
C10—N1—C8122.5 (3)O2—C18—H18A109.5
C10—N1—C7118.0 (3)O2—C18—H18B109.5
C8—N1—C7113.6 (3)H18A—C18—H18B109.5
C3—C2—C1121.8 (3)O2—C18—H18C109.5
C3—C2—H2119.1H18A—C18—H18C109.5
C1—C2—H2119.1H18B—C18—H18C109.5
C13—C19—N3107.1 (3)C6—C1—C2118.9 (3)
C13—C19—C7131.5 (3)C6—C1—C9121.8 (3)
N3—C19—C7121.2 (3)C2—C1—C9119.3 (3)
C1—C6—C5119.2 (3)C14—C15—N3108.2 (3)
C1—C6—C7121.5 (3)C14—C15—H15125.9
C5—C6—C7119.3 (3)N3—C15—H15125.9
O2—C3—C2125.3 (3)N1—C8—C9109.8 (3)
O2—C3—C4115.0 (3)N1—C8—H8A109.7
C2—C3—C4119.7 (3)C9—C8—H8A109.7
C19—C13—C14108.1 (3)N1—C8—H8B109.7
C19—C13—H13125.9C9—C8—H8B109.7
C14—C13—H13125.9H8A—C8—H8B108.2
N1—C7—C19110.6 (3)O1—C17—H17A109.5
N1—C7—C6110.3 (2)O1—C17—H17B109.5
C19—C7—C6111.7 (3)H17A—C17—H17B109.5
N1—C7—H7108.0O1—C17—H17C109.5
C19—C7—H7108.0H17A—C17—H17C109.5
C6—C7—H7108.0H17B—C17—H17C109.5
C1—C9—C8112.3 (3)C15—C14—C13107.2 (3)
C1—C9—H9A109.1C15—C14—H14126.4
C8—C9—H9A109.1C13—C14—H14126.4
C1—C9—H9B109.1O3—C11—C12109.2 (4)
C8—C9—H9B109.1O3—C11—H11A109.8
H9A—C9—H9B107.9C12—C11—H11A109.8
C4—C5—C6121.8 (3)O3—C11—H11B109.8
C4—C5—H5119.1C12—C11—H11B109.8
C6—C5—H5119.1H11A—C11—H11B108.3
C19—N3—C15109.4 (3)C11—C12—H12A109.5
C19—N3—H3125.3C11—C12—H12B109.5
C15—N3—H3125.3H12A—C12—H12B109.5
O4—C10—O3123.1 (3)C11—C12—H12C109.5
O4—C10—N1125.5 (3)H12A—C12—H12C109.5
O3—C10—N1111.4 (3)H12B—C12—H12C109.5
C18—O2—C3—C2−14.4 (5)C8—N1—C10—O3−14.8 (5)
C18—O2—C3—C4166.3 (3)C7—N1—C10—O3−166.0 (3)
C1—C2—C3—O2−179.6 (3)C17—O1—C4—C57.6 (5)
C1—C2—C3—C4−0.4 (5)C17—O1—C4—C3−172.4 (3)
N3—C19—C13—C14−0.4 (4)C6—C5—C4—O1178.8 (3)
C7—C19—C13—C14−175.2 (4)C6—C5—C4—C3−1.2 (5)
C10—N1—C7—C19−132.3 (3)O2—C3—C4—O10.6 (5)
C8—N1—C7—C1974.0 (3)C2—C3—C4—O1−178.7 (3)
C10—N1—C7—C6103.6 (3)O2—C3—C4—C5−179.4 (3)
C8—N1—C7—C6−50.1 (4)C2—C3—C4—C51.3 (5)
C13—C19—C7—N1−135.5 (4)C5—C6—C1—C20.7 (5)
N3—C19—C7—N150.3 (4)C7—C6—C1—C2−178.5 (3)
C13—C19—C7—C6−12.3 (5)C5—C6—C1—C9−179.6 (3)
N3—C19—C7—C6173.6 (3)C7—C6—C1—C91.2 (5)
C1—C6—C7—N116.3 (5)C3—C2—C1—C6−0.6 (5)
C5—C6—C7—N1−162.9 (3)C3—C2—C1—C9179.7 (3)
C1—C6—C7—C19−107.1 (4)C8—C9—C1—C612.8 (5)
C5—C6—C7—C1973.7 (4)C8—C9—C1—C2−167.5 (3)
C1—C6—C5—C40.2 (5)C19—N3—C15—C14−0.5 (4)
C7—C6—C5—C4179.4 (3)C10—N1—C8—C9−86.6 (4)
C13—C19—N3—C150.6 (4)C7—N1—C8—C965.8 (4)
C7—C19—N3—C15176.0 (3)C1—C9—C8—N1−44.0 (4)
C11—O3—C10—O40.0 (5)N3—C15—C14—C130.2 (5)
C11—O3—C10—N1−179.1 (3)C19—C13—C14—C150.1 (4)
C8—N1—C10—O4166.2 (4)C10—O3—C11—C12177.0 (4)
C7—N1—C10—O415.0 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.862.493.225 (4)145
N3—H3···O2i0.862.383.018 (4)132
C7—H7···O40.982.342.784 (4)107
C8—H8B···O30.972.292.653 (4)101

Symmetry codes: (i) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2093).

References

  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Kolev, T., Shivachev, B., Petrova, R., Ivanov, I., Atanasova, S. & Statkova, S. (2007). Acta Cryst. E63, o3353–o3354.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Petrova, R., Shivachev, B., Kosev, K., Stoyanova, M. & Angelova, S. (2005). Acta Cryst. E61, o2248–o2250.
  • Petrova, R., Titorenkova, R. & Shivachev, B. (2007). Acta Cryst. E63, o4751.
  • Rajnikant, Gupta, V. K., Deshmukh, M. B., Varghese, B. & Dinesh (2002). Crystallogr. Rep.47, 494–496.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shishkina, S. V., Shishkin, O. V., Ukrainets, I. V. & Sidorenko, L. V. (2005). Acta Cryst. E61, o4180–o4182.
  • Venkov, A. P., Statkova-Abeghe, St. & Donova, A. (2004). Cent. Eur. J. Chem.2, 234–246.
  • Vincente, J., Abad, J.-A., López, J.-A., Jones, P. J., Najera, C. & Botella-Segura, L. (2005). Organometallics, 24, 5044–5057.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography