PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1707.
Published online 2008 August 6. doi:  10.1107/S160053680802446X
PMCID: PMC2960631

4-Chloro-N′-[(Z)-4-nitro­benzyl­idene]benzohydrazide monohydrate

Abstract

In the title compound, C14H10ClN3O3·H2O, the benzohydrazide group is not planar and the mol­ecule exists in a cis configuration with respect to the methyl­idene unit. The dihedral angle between the two substituted benzene rings is 38.7 (3)°. In the crystal structure, mol­ecules are linked by O—H(...)O, O—H(...)N and N—H(...)O hydrogen bonds into a two-dimensional network parallel to the (100) plane. The crystal structure is further stabilized by weak C—H(...)O inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For background to the activities of hydrazones, see, for example: Bedia et al. (2006 [triangle]); Rollas & Kouçoukgouzel (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1707-scheme1.jpg

Experimental

Crystal data

  • C14H10ClN3O3·H2O
  • M r = 321.72
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1707-efi1.jpg
  • a = 16.3049 (8) Å
  • b = 6.8783 (4) Å
  • c = 12.7209 (7) Å
  • β = 104.122 (4)°
  • V = 1383.53 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.30 mm−1
  • T = 100.0 (1) K
  • 0.38 × 0.21 × 0.10 mm

Data collection

  • Bruker SMART APEX2 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.896, T max = 0.971
  • 14031 measured reflections
  • 3172 independent reflections
  • 2558 reflections with I > 2σ(I)
  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.086
  • wR(F 2) = 0.239
  • S = 1.13
  • 3172 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 1.40 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680802446X/hb2764sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802446X/hb2764Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

JNR and BK are grateful to Kerala State Council for Science Technology and Environment, Thiruvananthapuram, for financial assistance. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Hydrazones have been demonstrated to possess antimicrobial, anticonvulsant, analgesic, antiinflammatory, antiplatelet, antitubercular, anticancer and antitumor activities (e.g. Bedia et al., 2006). Hydrazones possessing an azometine –NHN=CH– proton constitute an important class of compounds for new drug development. Many researchers have therefore synthesized these compounds as target structures and evaluated their biological activities. These observations have served as guides for the development of new hydrazones that possess varied biological activities. These compounds are synthesized by heating the appropriate substituted hydrazines/hydrazides with aldehydes and ketones in solvents like ethanol, methanol, tetrahydrofuran, butanol, glacial acetic acid, ethanol-glacial and acetic acid. Another synthetic route for the synthesis of hydrazones is the coupling of aryldiazonium salts with active hydrogen compounds (Rollas & Kοuçοukgοuzel, 2007).

In the structure of the title compound (I) (Fig. 1), the molecule exist in a cis-configuration with respect to the methylidene unit (C8=N2). The dihedral angle between the two substituted benzene rings is 38.7 (3)°. In the 4-nitrophenyl unit, the nitro group is slightly twisted from the mean plane of the C9–C14 ring with the torsion angles O1–N3–C12–C13 = 174.9 (5)° and O2–N3–C12–C13 = -4.4 (8)°. The benzohydrazide moiety (N1/N2/O3/C1–C7) is not planar as indicated by the interplanar angle between the N1/N2/O3/C7 plane and C1–C6 pheny ring of 17.2 (3)°. The mean plane through N1/N2/C8/C9 plane makes the dihedral angle of 9.1 (5)° with the N1/N2/O3/C7 plane. The orientation of the benzohydrazide with respect to methylidine unit can be indicated by the torsion C7–N1–N2–C8 of 174.0 (5)°. The bond distances and angles are in normal ranges (Allen et al., 1987).

The water molecule is involved in O—H···O, O—H···N and N—H···O hydrogen bonds (Table 1). These hydrogen bonds linked the molecules into two dimensional networks parallel to the (100) plane as shown in Fig. 2. The crystal is further stabilized by weak C—H···O interactions (Table 1).

Experimental

The title compound was prepared by refluxing 4-chlorophenyl hydrazide (0.01 mol), 4-nitro benzaldehyde (0.01 mol) in ethanol (30 ml) and 3 drops of concentrated sulfuric acid for 3 hrs. Excess ethanol was removed from the reaction mixture under reduced pressure. The solid product obtained was filtered, washed with water and dried. Colorless needles of (I) were obtained from an ethanol solution by slow evaporation (Yield 53%), M.p. 488 K.

Refinement

All the H atoms were placed in calculated positions (N—H = 0.85Å, O—H = 0.88-0.89Å, C—H = 0.93Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier). The highest residual electron density peak is 1.88 Å from H13A and the deepest hole is 0.87 Å from C7.

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids for the non-hydrogen atoms. The N—H···O hydrogen bond is shown as a dashed line.
Fig. 2.
The packing diagram of (I), viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H10ClN3O3·H2OF000 = 664
Mr = 321.72Dx = 1.545 Mg m3
Monoclinic, P21/cMelting point: 488 K
Hall symbol: -P 2ybcMo Kα radiation λ = 0.71073 Å
a = 16.3049 (8) ÅCell parameters from 3172 reflections
b = 6.8783 (4) Åθ = 1.3–27.5º
c = 12.7209 (7) ŵ = 0.30 mm1
β = 104.122 (4)ºT = 100.0 (1) K
V = 1383.53 (13) Å3Needle, colorless
Z = 40.38 × 0.21 × 0.10 mm

Data collection

Bruker SMART APEX2 CCD diffractometer3172 independent reflections
Radiation source: fine-focus sealed tube2558 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.044
Detector resolution: 8.33 pixels mm-1θmax = 27.5º
T = 100.0(1) Kθmin = 1.3º
ω scansh = −21→21
Absorption correction: Multi-scan(SADABS; Bruker, 2005)k = −7→8
Tmin = 0.896, Tmax = 0.971l = −16→16
14031 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.086H-atom parameters constrained
wR(F2) = 0.239  w = 1/[σ2(Fo2) + (0.0417P)2 + 15.1986P] where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
3172 reflectionsΔρmax = 1.40 e Å3
199 parametersΔρmin = −0.46 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.79974 (8)0.8946 (2)0.59885 (10)0.0211 (3)
O1−0.0852 (2)0.7494 (7)−0.1492 (3)0.0312 (10)
O2−0.0194 (2)0.9231 (7)−0.2447 (3)0.0306 (10)
O30.5057 (2)0.8432 (6)0.1303 (3)0.0167 (8)
N10.4189 (2)0.8116 (6)0.2433 (3)0.0146 (8)
H1N10.41110.79460.30650.017*
N20.3494 (3)0.8265 (6)0.1565 (3)0.0154 (9)
N3−0.0222 (3)0.8347 (7)−0.1617 (3)0.0196 (9)
C10.6514 (3)0.8141 (8)0.3030 (4)0.0172 (10)
H1A0.65780.78850.23360.021*
C20.7224 (3)0.8303 (8)0.3878 (4)0.0184 (10)
H2A0.77610.81490.37620.022*
C30.7118 (3)0.8698 (8)0.4901 (4)0.0173 (10)
C40.6319 (3)0.8910 (8)0.5090 (4)0.0173 (10)
H4A0.62590.91730.57850.021*
C50.5614 (3)0.8724 (8)0.4236 (4)0.0153 (10)
H5A0.50770.88470.43590.018*
C60.5702 (3)0.8354 (7)0.3196 (4)0.0143 (10)
C70.4969 (3)0.8287 (7)0.2234 (4)0.0141 (9)
C80.2778 (3)0.7923 (8)0.1770 (4)0.0166 (10)
H8A0.27490.75640.24650.020*
C90.2003 (3)0.8100 (8)0.0902 (4)0.0152 (10)
C100.1241 (3)0.7367 (8)0.1067 (4)0.0181 (11)
H10A0.12300.68410.17370.022*
C110.0507 (3)0.7417 (8)0.0248 (4)0.0193 (11)
H11A0.00050.68900.03460.023*
C120.0543 (3)0.8281 (8)−0.0724 (4)0.0171 (10)
C130.1275 (3)0.9111 (8)−0.0900 (4)0.0165 (10)
H13A0.12720.9735−0.15490.020*
C140.2009 (3)0.8985 (8)−0.0080 (4)0.0168 (10)
H14A0.25100.9496−0.01870.020*
O1W0.3845 (2)0.6173 (6)0.4228 (3)0.0196 (8)
H1W0.41810.52230.41410.029*
H2W0.38620.62560.49310.029*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0164 (6)0.0226 (7)0.0194 (6)−0.0002 (5)−0.0049 (4)−0.0009 (5)
O10.0116 (17)0.049 (3)0.032 (2)−0.0057 (18)0.0034 (15)0.003 (2)
O20.022 (2)0.046 (3)0.0199 (19)−0.0012 (19)−0.0013 (15)0.0072 (19)
O30.0168 (16)0.023 (2)0.0106 (15)−0.0028 (15)0.0035 (12)−0.0020 (14)
N10.0144 (19)0.019 (2)0.0097 (17)−0.0017 (17)0.0010 (14)−0.0001 (17)
N20.0141 (19)0.015 (2)0.0153 (19)−0.0017 (16)−0.0010 (15)−0.0012 (17)
N30.0113 (19)0.027 (3)0.019 (2)0.0000 (18)0.0008 (16)0.0010 (19)
C10.020 (2)0.018 (3)0.015 (2)0.001 (2)0.0050 (18)0.000 (2)
C20.014 (2)0.019 (3)0.022 (2)0.001 (2)0.0038 (19)0.000 (2)
C30.016 (2)0.015 (3)0.017 (2)−0.0024 (19)−0.0034 (18)0.002 (2)
C40.020 (2)0.018 (3)0.013 (2)−0.001 (2)0.0028 (18)−0.001 (2)
C50.016 (2)0.016 (2)0.015 (2)0.0005 (19)0.0049 (17)−0.0023 (19)
C60.015 (2)0.011 (2)0.016 (2)−0.0011 (18)0.0024 (17)−0.0006 (19)
C70.013 (2)0.011 (2)0.018 (2)0.0008 (18)0.0025 (18)−0.0003 (19)
C80.018 (2)0.019 (3)0.012 (2)0.000 (2)0.0015 (18)0.000 (2)
C90.013 (2)0.016 (2)0.015 (2)−0.0001 (19)0.0026 (17)−0.001 (2)
C100.017 (2)0.023 (3)0.015 (2)0.000 (2)0.0055 (18)0.005 (2)
C110.014 (2)0.022 (3)0.022 (2)−0.001 (2)0.0044 (19)0.003 (2)
C120.013 (2)0.022 (3)0.015 (2)0.003 (2)0.0000 (17)0.001 (2)
C130.015 (2)0.019 (3)0.014 (2)−0.001 (2)0.0030 (18)0.000 (2)
C140.013 (2)0.019 (3)0.018 (2)0.0011 (19)0.0031 (18)−0.001 (2)
O1W0.0201 (17)0.028 (2)0.0111 (15)0.0008 (16)0.0047 (13)−0.0007 (15)

Geometric parameters (Å, °)

Cl1—C31.741 (5)C5—C61.389 (7)
O1—N31.226 (6)C5—H5A0.9300
O2—N31.228 (6)C6—C71.488 (6)
O3—C71.232 (6)C8—C91.466 (6)
N1—C71.361 (6)C8—H8A0.9300
N1—N21.379 (5)C9—C141.391 (7)
N1—H1N10.8525C9—C101.404 (7)
N2—C81.279 (6)C10—C111.383 (7)
N3—C121.469 (6)C10—H10A0.9300
C1—C21.380 (7)C11—C121.387 (7)
C1—C61.399 (7)C11—H11A0.9300
C1—H1A0.9300C12—C131.390 (7)
C2—C31.382 (7)C13—C141.384 (7)
C2—H2A0.9300C13—H13A0.9300
C3—C41.388 (7)C14—H14A0.9300
C4—C51.381 (6)O1W—H1W0.8771
C4—H4A0.9300O1W—H2W0.8898
C7—N1—N2117.9 (4)O3—C7—N1121.2 (4)
C7—N1—H1N1123.2O3—C7—C6122.0 (4)
N2—N1—H1N1118.9N1—C7—C6116.8 (4)
C8—N2—N1115.9 (4)N2—C8—C9119.6 (4)
O1—N3—O2123.8 (4)N2—C8—H8A120.2
O1—N3—C12117.7 (4)C9—C8—H8A120.2
O2—N3—C12118.5 (4)C14—C9—C10119.4 (4)
C2—C1—C6121.2 (5)C14—C9—C8121.3 (4)
C2—C1—H1A119.4C10—C9—C8119.3 (4)
C6—C1—H1A119.4C11—C10—C9120.9 (5)
C1—C2—C3118.6 (5)C11—C10—H10A119.6
C1—C2—H2A120.7C9—C10—H10A119.6
C3—C2—H2A120.7C10—C11—C12117.7 (5)
C2—C3—C4121.4 (4)C10—C11—H11A121.1
C2—C3—Cl1120.0 (4)C12—C11—H11A121.1
C4—C3—Cl1118.6 (4)C11—C12—C13123.0 (4)
C5—C4—C3119.3 (5)C11—C12—N3119.3 (4)
C5—C4—H4A120.3C13—C12—N3117.7 (4)
C3—C4—H4A120.3C14—C13—C12118.1 (5)
C4—C5—C6120.4 (5)C14—C13—H13A120.9
C4—C5—H5A119.8C12—C13—H13A120.9
C6—C5—H5A119.8C13—C14—C9120.6 (5)
C5—C6—C1119.0 (4)C13—C14—H14A119.7
C5—C6—C7122.7 (4)C9—C14—H14A119.7
C1—C6—C7118.2 (4)H1W—O1W—H2W107.9
C7—N1—N2—C8174.0 (5)N1—N2—C8—C9178.3 (4)
C6—C1—C2—C3−0.5 (8)N2—C8—C9—C14−12.5 (8)
C1—C2—C3—C40.8 (8)N2—C8—C9—C10167.7 (5)
C1—C2—C3—Cl1−179.2 (4)C14—C9—C10—C113.6 (8)
C2—C3—C4—C5−0.1 (8)C8—C9—C10—C11−176.7 (5)
Cl1—C3—C4—C5179.8 (4)C9—C10—C11—C12−2.4 (8)
C3—C4—C5—C6−0.8 (8)C10—C11—C12—C13−1.0 (8)
C4—C5—C6—C11.1 (8)C10—C11—C12—N3179.5 (5)
C4—C5—C6—C7−175.3 (5)O1—N3—C12—C11−5.5 (8)
C2—C1—C6—C5−0.4 (8)O2—N3—C12—C11175.2 (5)
C2—C1—C6—C7176.2 (5)O1—N3—C12—C13174.9 (5)
N2—N1—C7—O3−5.1 (7)O2—N3—C12—C13−4.4 (8)
N2—N1—C7—C6173.0 (4)C11—C12—C13—C143.1 (8)
C5—C6—C7—O3162.0 (5)N3—C12—C13—C14−177.3 (5)
C1—C6—C7—O3−14.4 (8)C12—C13—C14—C9−1.9 (8)
C5—C6—C7—N1−16.1 (7)C10—C9—C14—C13−1.3 (8)
C1—C6—C7—N1167.5 (5)C8—C9—C14—C13178.9 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···O3i0.881.932.794 (5)168
O1W—H2W···O3ii0.892.292.898 (5)126
O1W—H2W···N2ii0.892.323.185 (5)163
N1—H1N1···O1W0.852.042.818 (5)151
C2—H2A···O1iii0.932.403.329 (6)176
C14—H14A···O1Wiv0.932.513.322 (6)146

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, −y+3/2, z+1/2; (iii) x+1, −y+3/2, z+1/2; (iv) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2764).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem.41, 1253–1261. [PubMed]
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Rollas, S. & Kouçoukguzel, Ş. G. (2007). Molecules, 12, 1910–1939. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography