PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1805.
Published online 2008 August 23. doi:  10.1107/S1600536808026512
PMCID: PMC2960628

S-Benzyl­isothio­uronium nitrate

Abstract

In the crystal structure of the title compound, C8H11N2S+·NO3 , cations and anions are linked by inter­molecular N—H(...)O hydrogen bonds, forming one-dimensional chains along [110].

Related literature

For related literature, see: Barker & Powell (1998 [triangle]); Boyd (1989 [triangle]); Hemalatha et al. (2006 [triangle]); Zaccaro et al. (1999 [triangle]); Zyss et al. (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1805-scheme1.jpg

Experimental

Crystal data

  • C8H11N2S+·NO3
  • M r = 229.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1805-efi1.jpg
  • a = 5.8569 (4) Å
  • b = 7.5931 (5) Å
  • c = 23.9488 (16) Å
  • β = 93.304 (1)°
  • V = 1063.28 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.30 mm−1
  • T = 293 (2) K
  • 0.25 × 0.21 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: none
  • 11620 measured reflections
  • 2492 independent reflections
  • 2282 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.074
  • wR(F 2) = 0.229
  • S = 1.00
  • 2492 reflections
  • 136 parameters
  • H-atom parameters constrained
  • Δρmax = 1.08 e Å−3
  • Δρmin = −0.79 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808026512/lh2669sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026512/lh2669Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Organic molecular materials have many potential applications in integrated optics, and one of the most attractive applications is diode laser frequency doublers (Boyd, 1989). In the last two decades, extensive research has shown that organic crystals can exhibit nonlinear optical [NLO] efficiencies higher than those of inorganic materials (Zyss et al., 1984 & Zaccaro et al., 1999). Organic nonlinear optical materials are often formed by weak Vander Waals and hydrogen bonds and hence posses high degree of delocalization. Organic materials are molecular materials that offer unique opportunities for fundamental research as well as for technological applications. The title compound (I) is potentially in the above category of materials, therefore we have undertaken its crystal structure determination.

The title molecule is shown in Fig. 1. The C—N, S—C bond lengths and C—S—C and N—C—N bond angles are comparable with the similar structure reported earlier (Barker & Powell, 1998). The bond angles for O1—N3—O3 is 128.7 (4); O1—N3—O2 is 116.7 (4); O3—N3—O2 is 114.6 (3), indicating slight deviations in the bond angle from the expected 120° in terms of the sp2 hybridization. In the title crystal structure, C8H11N2S, NO3, cations and anions are linked by intermolecular N—H···O hydrogen bonds to form one-dimensional chains along [110] (Fig. 2).

Experimental

S-benzylisothiouronium chloride (SBTC) was synthesized as reported earlier (Hemalatha et al., 2006). The solutions of SBTC (5 g m) and potassium nitrate (5 g m) were prepared in water separately. These solutions were mixed together, and then stirred for 1 hr at room temperature. The precipitate was filtered off and washed with triple distilled water and the product was recrystallized from 0.2 M nitric acid. Single crystals were grown by slow evaporation of a solution of the title compound in water.

Refinement

All H-atoms were refined using a riding-model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic, 0.97 Å, Uiso = 1.2Ueq (C) for CH2 and 0.86Å for N-H with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
The molecular structure of title compound, showing 30% probability displacement ellipsoids.
Fig. 2.
Part of the crystal structure of (I) showing hydrogen bonds as dashed lines.

Crystal data

C8H11N2S+·NO3F000 = 480
Mr = 229.26Dx = 1.432 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1296 reflections
a = 5.8569 (4) Åθ = 1.7–28.0º
b = 7.5931 (5) ŵ = 0.30 mm1
c = 23.9488 (16) ÅT = 293 (2) K
β = 93.304 (1)ºNeedle, colorless
V = 1063.28 (12) Å30.25 × 0.21 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEXCCD area-detector diffractometer2282 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Monochromator: graphiteθmax = 28.0º
T = 293(2) Kθmin = 1.7º
ω scansh = −7→7
Absorption correction: nonek = −10→9
11620 measured reflectionsl = −31→30
2492 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.074H-atom parameters constrained
wR(F2) = 0.229  w = 1/[σ2(Fo2) + (0.1605P)2 + 0.7215P], where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2492 reflectionsΔρmax = 1.08 e Å3
136 parametersΔρmin = −0.79 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4484 (5)−0.0528 (3)0.25594 (13)0.0508 (6)
H10.58780.00530.25470.061*
C20.3462 (6)−0.0682 (4)0.30628 (13)0.0593 (7)
H20.4173−0.02160.33870.071*
C30.1385 (6)−0.1527 (4)0.30829 (13)0.0604 (7)
H30.0683−0.16170.34200.072*
C40.0359 (5)−0.2230 (4)0.26081 (14)0.0582 (7)
H4−0.1030−0.28150.26260.070*
C50.1357 (4)−0.2085 (3)0.21013 (12)0.0498 (6)
H50.0632−0.25550.17790.060*
C60.3459 (4)−0.1230 (3)0.20739 (11)0.0429 (5)
C70.4602 (5)−0.1054 (4)0.15294 (12)0.0552 (7)
H7A0.4431−0.21350.13160.066*
H7B0.6222−0.08210.16000.066*
C80.5290 (4)0.1362 (3)0.06841 (10)0.0436 (5)
N10.7023 (4)0.0351 (3)0.05812 (10)0.0574 (6)
H1A0.80170.06990.03550.069*
H1B0.7168−0.06620.07400.069*
N20.5046 (4)0.2908 (3)0.04458 (10)0.0563 (6)
H2A0.60310.32680.02190.068*
H2B0.39000.35630.05160.068*
N30.9654 (5)0.3266 (4)−0.04824 (12)0.0660 (7)
O10.7787 (6)0.3965 (5)−0.05407 (17)0.1137 (13)
O21.0010 (6)0.2296 (5)−0.00529 (14)0.0993 (10)
O31.1270 (5)0.3341 (4)−0.07925 (11)0.0832 (8)
S10.32436 (11)0.07656 (10)0.11423 (3)0.0538 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0463 (13)0.0418 (12)0.0640 (15)−0.0041 (10)0.0002 (11)0.0033 (11)
C20.0728 (19)0.0505 (15)0.0540 (15)−0.0015 (13)−0.0025 (13)−0.0016 (11)
C30.0714 (19)0.0498 (15)0.0619 (16)0.0045 (13)0.0204 (14)0.0105 (12)
C40.0469 (14)0.0474 (14)0.0814 (19)−0.0040 (10)0.0136 (13)0.0093 (13)
C50.0441 (12)0.0435 (12)0.0613 (14)−0.0011 (10)−0.0015 (11)−0.0005 (11)
C60.0398 (11)0.0346 (10)0.0547 (13)0.0050 (8)0.0067 (9)0.0049 (9)
C70.0588 (16)0.0471 (13)0.0612 (15)0.0176 (11)0.0168 (12)0.0101 (11)
C80.0415 (12)0.0452 (12)0.0444 (11)0.0058 (9)0.0048 (9)−0.0018 (9)
N10.0560 (14)0.0561 (13)0.0625 (13)0.0195 (11)0.0231 (11)0.0085 (11)
N20.0581 (14)0.0493 (12)0.0632 (13)0.0138 (10)0.0174 (11)0.0117 (10)
N30.0584 (14)0.0686 (16)0.0700 (16)0.0209 (12)−0.0037 (12)−0.0270 (13)
O10.089 (2)0.104 (2)0.146 (3)0.0491 (18)−0.008 (2)−0.031 (2)
O20.0851 (19)0.126 (3)0.0893 (18)−0.0035 (19)0.0280 (15)0.0245 (19)
O30.0965 (19)0.0875 (18)0.0691 (14)0.0096 (15)0.0337 (13)0.0199 (13)
S10.0424 (4)0.0579 (5)0.0624 (5)0.0142 (2)0.0143 (3)0.0142 (3)

Geometric parameters (Å, °)

C1—C21.381 (4)C7—H7A0.9700
C1—C61.384 (4)C7—H7B0.9700
C1—H10.9300C8—N11.307 (3)
C2—C31.379 (5)C8—N21.309 (3)
C2—H20.9300C8—S11.731 (3)
C3—C41.364 (5)N1—H1A0.8600
C3—H30.9300N1—H1B0.8600
C4—C51.382 (4)N2—H2A0.8600
C4—H40.9300N2—H2B0.8600
C5—C61.396 (3)N3—O11.217 (4)
C5—H50.9300N3—O31.237 (4)
C6—C71.506 (4)N3—O21.273 (4)
C7—S11.821 (3)
C2—C1—C6120.8 (3)C6—C7—H7A110.2
C2—C1—H1119.6S1—C7—H7A110.2
C6—C1—H1119.6C6—C7—H7B110.2
C1—C2—C3119.8 (3)S1—C7—H7B110.2
C1—C2—H2120.1H7A—C7—H7B108.5
C3—C2—H2120.1N1—C8—N2120.7 (2)
C4—C3—C2120.0 (3)N1—C8—S1122.6 (2)
C4—C3—H3120.0N2—C8—S1116.66 (19)
C2—C3—H3120.0C8—N1—H1A120.0
C3—C4—C5120.8 (3)C8—N1—H1B120.0
C3—C4—H4119.6H1A—N1—H1B120.0
C5—C4—H4119.6C8—N2—H2A120.0
C4—C5—C6119.8 (3)C8—N2—H2B120.0
C4—C5—H5120.1H2A—N2—H2B120.0
C6—C5—H5120.1O1—N3—O3128.7 (4)
C1—C6—C5118.7 (2)O1—N3—O2116.7 (4)
C1—C6—C7120.0 (2)O3—N3—O2114.6 (3)
C5—C6—C7121.3 (3)C8—S1—C7102.89 (12)
C6—C7—S1107.78 (17)
C6—C1—C2—C3−0.7 (4)C4—C5—C6—C7179.7 (2)
C1—C2—C3—C40.9 (5)C1—C6—C7—S1−99.7 (3)
C2—C3—C4—C5−1.0 (5)C5—C6—C7—S179.9 (3)
C3—C4—C5—C60.9 (4)N1—C8—S1—C715.6 (3)
C2—C1—C6—C50.6 (4)N2—C8—S1—C7−163.5 (2)
C2—C1—C6—C7−179.8 (2)C6—C7—S1—C8158.3 (2)
C4—C5—C6—C1−0.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.861.982.803 (4)160
N1—H1B···O3i0.862.233.009 (4)151
N2—H2A···O10.862.213.040 (5)164
N2—H2A···O20.862.563.240 (4)136
N2—H2B···O1ii0.862.122.913 (4)152

Symmetry codes: (i) −x+2, −y, −z; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2669).

References

  • Barker, J. & Powell, H. R. (1998). Acta Cryst. C54, 2019–2021.
  • Boyd, G. T. (1989). J. Opt. Soc. Am.B6, 685–688.
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hemalatha, P., Veeravazhuthi, V., Mallika, J., Narayanadass, S. K. & Mangalaraj, D. (2006). Cry. Res. Tec.41, 775–779.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Zaccaro, J., Lorutet, F. & Ibanez, A. (1999). J. Mater. Chem.9, 1091–1094.
  • Zyss, J., Nicoud, J. F. & Koquillay, M. (1984). J. Chem. Phys.81, 4160–4162.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography