PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1817.
Published online 2008 August 23. doi:  10.1107/S1600536808024781
PMCID: PMC2960625

1-[2-Oxo-1′-phenyl-2′,3′,5′,6′,7′,7a’-hexa­hydroindoline-3-spiro-3′-1′H-pyrrolizin-2′-yl]-3-phenyl­prop-2-en-1-one

Abstract

In the title compound, C29H26N2O2, one of the pyrrolidine rings in the pyrrolizine system is disordered, with site occupancies of ca 0.55 and 0.45. Both components of the disordered pyrrolidine ring adopt envelope conformations, whereas the other pyrrolidine ring adopts a twist conformation. The mol­ecules are linked into centrosymmetric dimers by N—H(...)O hydrogen bonds and the dimers are connected via C—H(...)π inter­actions.

Related literature

For related literature, see: Araki et al. (2002 [triangle]); Caine (1993 [triangle]); Gore et al. (1991 [triangle]); Harris & Uhle (1960 [triangle]); Ho et al. (1986 [triangle]); James et al. (1991 [triangle]); Kobayashi et al. (1991 [triangle]); Ramesh et al. (2007 [triangle]); Stevenson et al. (2000 [triangle]); Tietze et al. (1988 [triangle]). For ring puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1817-scheme1.jpg

Experimental

Crystal data

  • C29H26N2O2
  • M r = 434.52
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1817-efi1.jpg
  • a = 8.4210 (2) Å
  • b = 11.8895 (3) Å
  • c = 12.5121 (3) Å
  • α = 95.662 (1)°
  • β = 105.071 (1)°
  • γ = 105.815 (1)°
  • V = 1144.31 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 (2) K
  • 0.30 × 0.20 × 0.16 mm

Data collection

  • Bruker Kappa APEXII diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.977, T max = 0.987
  • 30483 measured reflections
  • 7422 independent reflections
  • 4682 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.200
  • S = 1.04
  • 7422 reflections
  • 308 parameters
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2004 [triangle]); data reduction: SAINT and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808024781/ci2643sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024781/ci2643Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SN thanks Professor M. N. Ponnuswamy, Department of Crystallography and Biophysics, University of Madras, India, for his guidance and valuable suggestions. SN also thanks the management of SRM, India, for their support.

supplementary crystallographic information

Comment

Spiro-compounds are a particular class of naturally occurring substances characterized by highly pronounced biological properties (Kobayashi et al., 1991; James et al., 1991). The spiro-pyrrolidine ring system is also found in phermones, antibiotics (Gore et al., 1991) and antitumour agents (Tietze et al., 1988; Araki et al., 2002). Indole compounds can be used as bioactive drugs (Stevenson et al., 2000). Indole derivatives exhibit anti-allergic, central nervous system depressant and muscle relaxant properties (Harris & Uhle, 1960; Ho et al., 1986). In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here.

A displacement ellipsoid plot of the title compound is shown in Fig. 1. The pyrrolizine ring system is folded about the bridging N1—C1 bond, as observed in related structures (Ramesh et al., 2007). The sum of angles at N1 (339.7°) is in accordance with sp3 hybridization. The indole ring system (N2/C5/C14–C20) forms dihedral angles of 57.4 (6)° and 33.4 (5)°, respectively, with the C24—C29 and C8—C13 phenyl rings. The dihedral angle between the two phenyl rings is 82.9 (7)°. In the pyrrolizine ring system, the pyrrolidine ring (N1/C1/C5/C6/C7) adopts a twist conformation with Cremer & Pople (1975) puckering parameters q2 and [var phi] of 0.419 (1) Å and 120.7 (2)°, respectively. Both major and minor conformers of the disordered pyrrolidine ring adopt envelope conformations; the puckering parameters q2 and [var phi] are 0.267 (4) Å and -68.4 (8)°, respectively, for the major conformer (N1/C1-C4), and 0.254 (8) Å and 108.3 (8)°, respectively, for the minor conformer (N1/C1/C2/C3A/C4). Atom C3/C3A deviates by 0.411 (2)/0.389 Å from the N1/C1/C2/C4 plane.

The crystal structure is stabilized by intermolecular N—H···O hydrogen bonds and C—H···π interactions involving the C8-C13 phenyl ring (Table 1). The N—H···O hydrogen bonds link the molecules into centrosymmetric dimers (Fig. 2).

Experimental

A solution of (1E,6E)-4-benzylidene-1,7-diphenylhepta-1,6-diene-3,5-dione (1 mmol), isatin (1 mmol) and L-proline (1 mmol) in aqueous methanol (20 ml) was refluxed until the disappearance of starting materials as evidenced by TLC. The solvent was removed under reduced pressure and the crude product was purified by column chromatography using petroleum ether-ethyl acetate (5:1) as eluent. The final product was recrystallized from ethanol-chloroform (2:8 v/v) solution.

Refinement

Atom C3 of one of the pyrrolidine rings is disordered over two positions (C3 and C3A) with site occupancies of 0.546 (12) and 0.454 (12). All H atoms were placed in idealized positions and allowed to ride on their parent atoms, with N-H = 0.86 Å, C-H = 0.93-0.98 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with 30% probability displacement ellipsoids. Only the major disorder component is shown.
Fig. 2.
The packing of the molecules viewed along the a axis. Dashed lines indicate hydrogen bonds. H atoms not involed in hydrogen bonds have been omitted. Only the major disorder component is shown.

Crystal data

C29H26N2O2Z = 2
Mr = 434.52F000 = 460
Triclinic, P1Dx = 1.261 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.4210 (2) ÅCell parameters from 9449 reflections
b = 11.8895 (3) Åθ = 2.3–30.1º
c = 12.5121 (3) ŵ = 0.08 mm1
α = 95.662 (1)ºT = 293 (2) K
β = 105.071 (1)ºPrism, yellow
γ = 105.815 (1)º0.30 × 0.20 × 0.16 mm
V = 1144.31 (5) Å3

Data collection

Bruker Kappa APEXII diffractometer7422 independent reflections
Radiation source: fine-focus sealed tube4682 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.024
T = 293(2) Kθmax = 31.3º
ω scansθmin = 1.7º
Absorption correction: multi-scan(Blessing, 1995)h = −12→11
Tmin = 0.977, Tmax = 0.987k = −17→17
30483 measured reflectionsl = −18→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.200  w = 1/[σ2(Fo2) + (0.1054P)2 + 0.1777P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
7422 reflectionsΔρmax = 0.43 e Å3
308 parametersΔρmin = −0.23 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O11.13350 (16)0.65165 (11)0.20138 (10)0.0592 (3)
O20.94660 (16)0.99242 (9)0.34629 (9)0.0487 (3)
N10.69132 (15)0.79708 (12)0.16496 (10)0.0446 (3)
N20.89750 (18)0.84222 (11)0.44618 (10)0.0450 (3)
H20.92400.88440.51190.054*
C10.71391 (18)0.77545 (15)0.05236 (11)0.0428 (3)
H10.74370.85110.02590.051*
C20.5380 (2)0.6955 (2)−0.02380 (15)0.0623 (5)
H2A0.47780.7412−0.06950.075*0.546 (12)
H2B0.55160.6330−0.07330.075*0.546 (12)
H2C0.53820.6148−0.03910.075*0.454 (12)
H2D0.50620.7225−0.09370.075*0.454 (12)
C30.4432 (6)0.6455 (5)0.0502 (4)0.0542 (13)0.546 (12)
H3A0.46000.56980.06300.065*0.546 (12)
H3B0.32050.63290.01750.065*0.546 (12)
C3A0.4171 (6)0.7056 (11)0.0445 (4)0.067 (2)0.454 (12)
H3C0.36580.76740.02450.080*0.454 (12)
H3D0.32480.63100.02940.080*0.454 (12)
C40.5126 (2)0.7336 (2)0.15888 (16)0.0635 (5)
H4A0.44540.78820.15860.076*0.546 (12)
H4B0.50950.69320.22240.076*0.546 (12)
H4C0.46730.78260.20060.076*0.454 (12)
H4D0.50760.66220.18950.076*0.454 (12)
C50.83562 (17)0.78291 (12)0.25117 (11)0.0367 (3)
C60.97540 (17)0.78955 (12)0.18877 (10)0.0342 (3)
H61.02840.87320.18630.041*
C70.86634 (17)0.72579 (13)0.06945 (10)0.0364 (3)
H70.82320.64070.07050.044*
C80.95589 (18)0.74035 (13)−0.02018 (11)0.0372 (3)
C90.9407 (2)0.64170 (14)−0.09576 (12)0.0463 (4)
H90.87880.5664−0.08890.056*
C101.0168 (3)0.65438 (17)−0.18139 (14)0.0571 (4)
H101.00550.5875−0.23150.069*
C111.1081 (2)0.76386 (18)−0.19285 (14)0.0575 (4)
H111.15960.7715−0.25020.069*
C121.1240 (2)0.86314 (17)−0.11947 (14)0.0547 (4)
H121.18530.9381−0.12750.066*
C131.0487 (2)0.85126 (14)−0.03375 (12)0.0459 (3)
H131.06030.91870.01580.055*
C140.89955 (18)0.88773 (13)0.35190 (11)0.0381 (3)
C150.8470 (2)0.71800 (14)0.42408 (12)0.0434 (3)
C160.8408 (3)0.64255 (18)0.50050 (15)0.0600 (5)
H160.87170.67170.57720.072*
C170.7871 (3)0.52212 (19)0.45907 (19)0.0714 (6)
H170.78170.46910.50890.086*
C180.7413 (3)0.47874 (17)0.34547 (18)0.0669 (5)
H180.70370.39710.31930.080*
C190.7512 (2)0.55614 (15)0.27045 (15)0.0539 (4)
H190.72210.52680.19390.065*
C200.80430 (19)0.67704 (13)0.30936 (12)0.0410 (3)
C211.11658 (18)0.74122 (14)0.24512 (12)0.0415 (3)
C221.2274 (2)0.80951 (16)0.35781 (13)0.0486 (4)
H221.22040.88450.38030.058*
C231.3353 (2)0.76867 (17)0.42759 (14)0.0516 (4)
H231.35210.69860.40000.062*
C241.4307 (2)0.82413 (18)0.54447 (14)0.0542 (4)
C251.3864 (3)0.9102 (2)0.60403 (15)0.0654 (5)
H251.29710.93760.56760.078*
C261.4737 (3)0.9552 (2)0.71647 (17)0.0810 (7)
H261.44181.01140.75610.097*
C271.6073 (3)0.9165 (3)0.7691 (2)0.0931 (9)
H271.66770.94770.84450.112*
C281.6530 (3)0.8331 (3)0.7128 (3)0.1039 (10)
H281.74440.80780.74970.125*
C291.5644 (3)0.7853 (3)0.6008 (2)0.0830 (7)
H291.59490.72680.56320.100*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0650 (8)0.0620 (8)0.0555 (7)0.0293 (6)0.0181 (6)0.0059 (6)
O20.0677 (7)0.0387 (6)0.0321 (5)0.0100 (5)0.0121 (5)−0.0012 (4)
N10.0375 (6)0.0593 (8)0.0301 (6)0.0104 (5)0.0082 (5)−0.0051 (5)
N20.0613 (8)0.0429 (7)0.0250 (5)0.0086 (6)0.0145 (5)−0.0029 (5)
C10.0404 (7)0.0532 (9)0.0283 (7)0.0103 (6)0.0067 (5)−0.0011 (6)
C20.0431 (8)0.0851 (14)0.0402 (9)0.0100 (8)−0.0006 (7)−0.0092 (9)
C30.0394 (18)0.051 (2)0.055 (2)0.0010 (15)0.0039 (14)−0.0054 (17)
C3A0.039 (2)0.102 (6)0.050 (2)0.018 (2)0.0014 (16)0.011 (3)
C40.0388 (8)0.0880 (14)0.0545 (10)0.0097 (8)0.0153 (7)−0.0037 (9)
C50.0395 (6)0.0390 (7)0.0254 (6)0.0050 (5)0.0105 (5)−0.0041 (5)
C60.0375 (6)0.0365 (7)0.0237 (6)0.0056 (5)0.0092 (5)−0.0005 (5)
C70.0411 (6)0.0379 (7)0.0237 (6)0.0049 (5)0.0091 (5)−0.0015 (5)
C80.0425 (7)0.0419 (8)0.0240 (6)0.0110 (6)0.0090 (5)0.0009 (5)
C90.0608 (9)0.0423 (8)0.0345 (7)0.0121 (7)0.0185 (7)0.0004 (6)
C100.0781 (12)0.0610 (11)0.0378 (8)0.0248 (9)0.0267 (8)−0.0002 (7)
C110.0687 (11)0.0753 (12)0.0351 (8)0.0228 (9)0.0258 (8)0.0106 (8)
C120.0635 (10)0.0562 (10)0.0428 (9)0.0092 (8)0.0215 (8)0.0129 (7)
C130.0559 (8)0.0451 (8)0.0334 (7)0.0109 (7)0.0154 (6)0.0009 (6)
C140.0426 (7)0.0405 (8)0.0265 (6)0.0086 (6)0.0100 (5)−0.0028 (5)
C150.0510 (8)0.0436 (8)0.0335 (7)0.0086 (6)0.0175 (6)0.0022 (6)
C160.0809 (12)0.0603 (11)0.0423 (9)0.0185 (9)0.0265 (9)0.0127 (8)
C170.1015 (16)0.0559 (12)0.0669 (13)0.0207 (11)0.0407 (12)0.0247 (10)
C180.0915 (14)0.0417 (10)0.0708 (13)0.0098 (9)0.0420 (11)0.0086 (9)
C190.0658 (10)0.0420 (9)0.0478 (9)0.0030 (7)0.0252 (8)−0.0028 (7)
C200.0454 (7)0.0407 (8)0.0329 (7)0.0050 (6)0.0166 (6)−0.0009 (6)
C210.0410 (7)0.0495 (9)0.0340 (7)0.0113 (6)0.0142 (6)0.0075 (6)
C220.0454 (8)0.0581 (10)0.0400 (8)0.0157 (7)0.0098 (6)0.0084 (7)
C230.0487 (8)0.0655 (11)0.0449 (9)0.0204 (7)0.0163 (7)0.0158 (8)
C240.0418 (8)0.0762 (12)0.0399 (8)0.0111 (7)0.0089 (6)0.0195 (8)
C250.0636 (11)0.0808 (14)0.0420 (9)0.0191 (10)0.0031 (8)0.0104 (9)
C260.0912 (16)0.0830 (16)0.0447 (11)0.0016 (12)0.0090 (10)0.0056 (10)
C270.0738 (14)0.113 (2)0.0494 (12)−0.0149 (14)−0.0117 (11)0.0253 (13)
C280.0616 (13)0.159 (3)0.0767 (17)0.0308 (16)−0.0095 (12)0.0473 (19)
C290.0599 (11)0.121 (2)0.0753 (15)0.0402 (12)0.0142 (11)0.0323 (14)

Geometric parameters (Å, °)

O1—C211.2092 (19)C8—C131.389 (2)
O2—C141.2141 (18)C9—C101.385 (2)
N1—C51.4610 (19)C9—H90.93
N1—C41.467 (2)C10—C111.362 (3)
N1—C11.4772 (18)C10—H100.93
N2—C141.3477 (19)C11—C121.375 (3)
N2—C151.398 (2)C11—H110.93
N2—H20.86C12—C131.381 (2)
C1—C21.525 (2)C12—H120.93
C1—C71.529 (2)C13—H130.93
C1—H10.98C15—C161.375 (2)
C2—C31.443 (5)C15—C201.387 (2)
C2—C3A1.511 (6)C16—C171.379 (3)
C2—H2A0.97C16—H160.93
C2—H2B0.97C17—C181.377 (3)
C2—H2C0.96C17—H170.93
C2—H2D0.96C18—C191.380 (3)
C3—C41.503 (4)C18—H180.93
C3—H3A0.97C19—C201.379 (2)
C3—H3B0.97C19—H190.93
C3A—C41.402 (5)C21—C221.481 (2)
C3A—H3C0.97C22—C231.318 (2)
C3A—H3D0.97C22—H220.93
C4—H4A0.97C23—C241.459 (2)
C4—H4B0.97C23—H230.93
C4—H4C0.96C24—C291.383 (3)
C4—H4D0.96C24—C251.394 (3)
C5—C201.511 (2)C25—C261.380 (3)
C5—C141.5502 (18)C25—H250.93
C5—C61.5623 (18)C26—C271.367 (4)
C6—C211.502 (2)C26—H260.93
C6—C71.5268 (18)C27—C281.356 (4)
C6—H60.98C27—H270.93
C7—C81.5044 (18)C28—C291.382 (4)
C7—H70.98C28—H280.93
C8—C91.387 (2)C29—H290.93
C5—N1—C4120.21 (14)C8—C7—C6116.26 (11)
C5—N1—C1110.50 (11)C8—C7—C1114.40 (12)
C4—N1—C1109.02 (12)C6—C7—C1101.23 (10)
C14—N2—C15111.72 (11)C8—C7—H7108.2
C14—N2—H2124.1C6—C7—H7108.2
C15—N2—H2124.1C1—C7—H7108.2
N1—C1—C2105.41 (12)C9—C8—C13117.87 (13)
N1—C1—C7105.36 (11)C9—C8—C7119.99 (13)
C2—C1—C7117.71 (14)C13—C8—C7122.08 (12)
N1—C1—H1109.3C10—C9—C8120.57 (15)
C2—C1—H1109.3C10—C9—H9119.7
C7—C1—H1109.3C8—C9—H9119.7
C3—C2—C1106.1 (2)C11—C10—C9120.64 (15)
C3A—C2—C1103.4 (3)C11—C10—H10119.7
C3—C2—H2A110.5C9—C10—H10119.7
C3A—C2—H2A82.8C10—C11—C12119.90 (15)
C1—C2—H2A110.5C10—C11—H11120.0
C3—C2—H2B110.5C12—C11—H11120.0
C3A—C2—H2B136.6C11—C12—C13119.82 (16)
C1—C2—H2B110.5C11—C12—H12120.1
H2A—C2—H2B108.7C13—C12—H12120.1
C3—C2—H2C80.9C12—C13—C8121.20 (14)
C3A—C2—H2C110.8C12—C13—H13119.4
C1—C2—H2C111.0C8—C13—H13119.4
H2A—C2—H2C131.3O2—C14—N2126.33 (12)
C3—C2—H2D133.8O2—C14—C5125.50 (12)
C3A—C2—H2D111.3N2—C14—C5108.16 (12)
C1—C2—H2D111.2C16—C15—C20122.42 (15)
H2B—C2—H2D80.9C16—C15—N2127.65 (14)
H2C—C2—H2D109.1C20—C15—N2109.92 (13)
C2—C3—C4106.6 (3)C15—C16—C17117.51 (17)
C2—C3—H3A110.4C15—C16—H16121.2
C4—C3—H3A110.4C17—C16—H16121.2
C2—C3—H3B110.4C18—C17—C16121.39 (18)
C4—C3—H3B110.4C18—C17—H17119.3
H3A—C3—H3B108.6C16—C17—H17119.3
C4—C3A—C2108.3 (3)C17—C18—C19120.12 (17)
C4—C3A—H3C110.0C17—C18—H18119.9
C2—C3A—H3C110.0C19—C18—H18119.9
C4—C3A—H3D110.0C20—C19—C18119.81 (16)
C2—C3A—H3D110.0C20—C19—H19120.1
H3C—C3A—H3D108.4C18—C19—H19120.1
C3A—C4—N1106.5 (3)C19—C20—C15118.74 (15)
N1—C4—C3105.00 (19)C19—C20—C5132.59 (13)
C3A—C4—H4A80.9C15—C20—C5108.62 (12)
N1—C4—H4A110.7O1—C21—C22123.61 (15)
C3—C4—H4A110.7O1—C21—C6121.49 (13)
C3A—C4—H4B134.2C22—C21—C6114.88 (13)
N1—C4—H4B110.7C23—C22—C21122.89 (16)
C3—C4—H4B110.7C23—C22—H22118.6
H4A—C4—H4B108.8C21—C22—H22118.6
C3A—C4—H4C110.6C22—C23—C24125.45 (17)
N1—C4—H4C110.6C22—C23—H23117.3
C3—C4—H4C135.9C24—C23—H23117.3
H4B—C4—H4C80.1C29—C24—C25118.35 (18)
C3A—C4—H4D110.2C29—C24—C23118.88 (19)
N1—C4—H4D110.3C25—C24—C23122.67 (16)
C3—C4—H4D81.4C26—C25—C24120.8 (2)
H4A—C4—H4D131.8C26—C25—H25119.6
H4C—C4—H4D108.7C24—C25—H25119.6
N1—C5—C20119.04 (12)C27—C26—C25119.4 (3)
N1—C5—C14109.47 (12)C27—C26—H26120.3
C20—C5—C14101.51 (11)C25—C26—H26120.3
N1—C5—C6102.60 (10)C28—C27—C26120.9 (2)
C20—C5—C6113.67 (12)C28—C27—H27119.6
C14—C5—C6110.64 (11)C26—C27—H27119.6
C21—C6—C7116.10 (12)C27—C28—C29120.4 (2)
C21—C6—C5113.56 (11)C27—C28—H28119.8
C7—C6—C5102.38 (10)C29—C28—H28119.8
C21—C6—H6108.1C28—C29—C24120.2 (3)
C7—C6—H6108.1C28—C29—H29119.9
C5—C6—H6108.1C24—C29—H29119.9
C5—N1—C1—C2134.55 (15)C10—C11—C12—C130.6 (3)
C4—N1—C1—C20.4 (2)C11—C12—C13—C8−0.3 (3)
C5—N1—C1—C79.38 (16)C9—C8—C13—C12−0.2 (2)
C4—N1—C1—C7−124.81 (15)C7—C8—C13—C12−177.30 (14)
N1—C1—C2—C3−17.5 (4)C15—N2—C14—O2−175.92 (15)
C7—C1—C2—C399.5 (3)C15—N2—C14—C52.62 (17)
N1—C1—C2—C3A15.1 (5)N1—C5—C14—O2−55.88 (18)
C7—C1—C2—C3A132.1 (5)C20—C5—C14—O2177.44 (14)
C3A—C2—C3—C4−61.7 (4)C6—C5—C14—O256.48 (19)
C1—C2—C3—C427.8 (5)N1—C5—C14—N2125.56 (13)
C3—C2—C3A—C472.5 (5)C20—C5—C14—N2−1.11 (15)
C1—C2—C3A—C4−26.5 (8)C6—C5—C14—N2−122.08 (13)
C2—C3A—C4—N127.2 (8)C14—N2—C15—C16175.59 (17)
C2—C3A—C4—C3−64.8 (6)C14—N2—C15—C20−3.20 (18)
C5—N1—C4—C3A−146.1 (5)C20—C15—C16—C17−1.1 (3)
C1—N1—C4—C3A−17.1 (6)N2—C15—C16—C17−179.71 (18)
C5—N1—C4—C3−112.8 (3)C15—C16—C17—C180.0 (3)
C1—N1—C4—C316.2 (4)C16—C17—C18—C191.0 (4)
C2—C3—C4—C3A69.8 (6)C17—C18—C19—C20−1.1 (3)
C2—C3—C4—N1−27.4 (5)C18—C19—C20—C150.1 (3)
C4—N1—C5—C2018.66 (19)C18—C19—C20—C5176.93 (17)
C1—N1—C5—C20−109.67 (14)C16—C15—C20—C191.0 (2)
C4—N1—C5—C14−97.34 (16)N2—C15—C20—C19179.89 (14)
C1—N1—C5—C14134.34 (12)C16—C15—C20—C5−176.54 (15)
C4—N1—C5—C6145.14 (14)N2—C15—C20—C52.32 (17)
C1—N1—C5—C616.82 (15)N1—C5—C20—C1962.0 (2)
N1—C5—C6—C21−162.45 (12)C14—C5—C20—C19−177.84 (17)
C20—C5—C6—C21−32.59 (16)C6—C5—C20—C19−59.0 (2)
C14—C5—C6—C2180.86 (15)N1—C5—C20—C15−120.88 (13)
N1—C5—C6—C7−36.51 (13)C14—C5—C20—C15−0.74 (15)
C20—C5—C6—C793.36 (13)C6—C5—C20—C15118.07 (13)
C14—C5—C6—C7−153.20 (12)C7—C6—C21—O1−5.4 (2)
C21—C6—C7—C8−69.38 (16)C5—C6—C21—O1112.87 (15)
C5—C6—C7—C8166.35 (12)C7—C6—C21—C22176.22 (12)
C21—C6—C7—C1166.04 (12)C5—C6—C21—C22−65.48 (16)
C5—C6—C7—C141.76 (13)O1—C21—C22—C23−11.3 (3)
N1—C1—C7—C8−157.82 (12)C6—C21—C22—C23167.04 (15)
C2—C1—C7—C885.07 (17)C21—C22—C23—C24−171.52 (15)
N1—C1—C7—C6−31.99 (14)C22—C23—C24—C29−167.19 (19)
C2—C1—C7—C6−149.10 (14)C22—C23—C24—C2516.6 (3)
C6—C7—C8—C9132.52 (15)C29—C24—C25—C26−0.2 (3)
C1—C7—C8—C9−109.94 (16)C23—C24—C25—C26176.07 (19)
C6—C7—C8—C13−50.44 (19)C24—C25—C26—C271.4 (3)
C1—C7—C8—C1367.09 (18)C25—C26—C27—C28−1.2 (4)
C13—C8—C9—C100.3 (2)C26—C27—C28—C29−0.2 (4)
C7—C8—C9—C10177.46 (15)C27—C28—C29—C241.4 (4)
C8—C9—C10—C110.1 (3)C25—C24—C29—C28−1.2 (3)
C9—C10—C11—C12−0.5 (3)C23—C24—C29—C28−177.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.022.854 (2)162
C28—H28···Cg1ii0.932.893.815 (3)172

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) x−1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2643).

References

  • Araki, K., Suenaga, K., Sengoka, T. & Uemura, D. (2002). Tetrahedron, 58, 1983–1996.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Caine, B. (1993). Science, 260, 1814. [PubMed]
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gore, V. G., Chordia, M. D. & Narasimhan, N. S. (1991). Tetrahedron, 46, 2483–2494.
  • Harris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther.128, 353–363.
  • Ho, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem.29, 118–121.
  • James, D., Kunze, H. B. & Faulker, D. (1991). J Nat. Prod 54, 1137–1140. [PubMed]
  • Kobayashi, J., Tsuda, M., Agemi, K. & Vacelet, J. (1991). Tetrahedron, 47, 6617–6622.
  • Ramesh, P., Murugavel, S., SubbiahPandi, A., Murugan, R. & Narayanan, S. S. (2007). Acta Cryst. E63, o4106–o4107.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stevenson, G. I., Smith, A. L., Lewis, S., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett.10, 2697–2704. [PubMed]
  • Tietze, L.-F., Schneider, G., Woelfling, J., Nobel, T. & Wulff, C. (1988). Angew. Chem. Int. Ed.37, 2469–2470.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography