PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1727.
Published online 2008 August 9. doi:  10.1107/S1600536808024896
PMCID: PMC2960614

Ethyl 2-(3-benzoyl­thio­ureido)acetate

Abstract

The title compound, C12H14N2O3S, adopts a cistrans geometry of the thio­urea group and is stabilized by intra­molecular hydrogen bonds between the carbonyl O atoms and the H atom of the thio­amide group and by a C—H(...)S interaction. Mol­ecules are linked by two inter­molecular hydrogen bonds (C—H(...)O and N—H(...)O), forming a one-dimensional chain parallel to the c axis.

Related literature

For related literature, see: Allen et al. (1987 [triangle]); Ngah et al. (2005 [triangle]); Yamin & Hassan (2004 [triangle]); Yamin & Yusof (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1727-scheme1.jpg

Experimental

Crystal data

  • C12H14N2O3S
  • M r = 266.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1727-efi1.jpg
  • a = 11.908 (4) Å
  • b = 7.795 (3) Å
  • c = 14.024 (5) Å
  • β = 95.600 (5)°
  • V = 1295.5 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 298 (2) K
  • 0.46 × 0.36 × 0.22 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.893, T max = 0.947
  • 6762 measured reflections
  • 2537 independent reflections
  • 1967 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.107
  • S = 1.05
  • 2537 reflections
  • 164 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995 [triangle]) and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808024896/at2606sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024896/at2606Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Universiti Kebangsaan Malaysia for providing the facilities and the Ministry of Science, Technology and Innovation for the research fund No. UKM-ST-01FRGS0016–2006.

supplementary crystallographic information

Comment

Some thiourea derivatives of amino acids, such as 2-[3-(4-methoxbenzoyl) thioureido]-3-methylbutyric acid (Ngah et al., 2005), 3-[3-(4-methoxybenzoyl) thioureido]propanoic acid and (Ngah et al., 2005) and 2-(3-benzoylthioureido) ethanoic dimethyl sulfoxide solvate (II) (Ngah et al., 2005) have been synthesized and their structures have been reported. We are interested to synthesize a series of esters containing thiourea moiety by catalytic transesterification. The title compound, (I), is an ester of (II).

The molecule maintains the cis-trans geometry of the thiourea moiety (Fig. 1). The phenyl ring (C1—C6) and (S1/N1/N2/O1/C6/C7/C8/C9) fragments are each planar with maximum deviation of 0.031 (2)Å for C6 atom from the least square plane of the later. The dihedral angle between the two planes is 26.53 (8)°. The bond lengths and angles are in normal ranges (Allen et al., 1987). There are three intramolecular hydrogen bonds, N2—H2···O1, N2—H2···O2 and C9—H9B···S1. As a result, one pseudo-six-membered ring (N2/H2/O1/C7/N1/C8) and two pseudo-five-member ring (N2/H2/O2/C10/C9) and (C9/H9B/S1/C8/N2) are formed, respectively. In the crystal structure, the molecules are linked by N1—H1···O2 and C9—H9B···S1 intermolecular hydrogen bonds to form one dimensional chain along the c axis (Fig. 2).

Experimental

2-(3-Benzoylthioureido)ethanoic acid was prepared as reported (Ngah et al., 2005). 2.38 g (10 mmol) of 2-(3-benzoylthioureido)ethanoic acid and 2.45 g (10 mmol) of lanthanum chloride were refluxed in methanol for 17 h. The resulting solution was left for one day at room temperature. Recrystallization of the resulting solid from dichloromethane gave colourless crystals of (I) [yield: 70%]).

Refinement

All H-atoms attached to C were positioned geometrically and refined using a riding model Uiso=1.2Ueq (C) for aromatic 0.93 Å, Uiso = 1.2Ueq (C) for CH2 0.97 Å and Uiso = 1.5Ueq (C) for CH3 0.97 Å. Hydrogen atoms attached to N were also positioned geometrically and allowed to ride on their parent atoms and with Uiso(H) = 1.2Ueq(N) for N–H 0.86 Å.

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsods drawn at the 50% probability level.
Fig. 2.
A packing diagram of (I) viewed down the a axis. Hydrogen bonds are shown by dashed lines.

Crystal data

C12H14N2O3SF000 = 560
Mr = 266.31Dx = 1.365 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2409 reflections
a = 11.908 (4) Åθ = 1.7–26.0º
b = 7.795 (3) ŵ = 0.25 mm1
c = 14.024 (5) ÅT = 298 (2) K
β = 95.600 (5)ºBlock, colourless
V = 1295.5 (8) Å30.46 × 0.36 × 0.22 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer2537 independent reflections
Radiation source: fine-focus sealed tube1967 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.021
T = 298(2) Kθmax = 26.0º
ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −14→13
Tmin = 0.893, Tmax = 0.947k = −9→9
6762 measured reflectionsl = −16→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.107  w = 1/[σ2(Fo2) + (0.0476P)2 + 0.3616P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2537 reflectionsΔρmax = 0.20 e Å3
164 parametersΔρmin = −0.23 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.36516 (4)0.11910 (9)0.60927 (4)0.0632 (2)
O10.01958 (11)0.1765 (2)0.44591 (9)0.0615 (4)
O20.21706 (12)0.0629 (2)0.25554 (10)0.0657 (4)
O30.37578 (11)−0.0928 (2)0.25994 (9)0.0626 (4)
N10.15088 (12)0.2028 (2)0.57452 (10)0.0454 (4)
H10.16130.24280.63190.055*
N20.22969 (13)0.0690 (2)0.45050 (11)0.0506 (4)
H20.16500.08210.41830.061*
C1−0.03537 (15)0.2974 (3)0.68490 (13)0.0482 (5)
H1A0.02420.24120.71960.058*
C2−0.11815 (16)0.3747 (3)0.73213 (14)0.0540 (5)
H2A−0.11450.36960.79860.065*
C3−0.20575 (16)0.4590 (3)0.68161 (15)0.0545 (5)
H3−0.26100.51180.71390.065*
C4−0.21224 (16)0.4658 (3)0.58254 (15)0.0564 (5)
H4−0.27140.52370.54830.068*
C5−0.13077 (15)0.3864 (3)0.53472 (14)0.0506 (5)
H5−0.13610.38870.46810.061*
C6−0.04087 (14)0.3032 (2)0.58545 (12)0.0417 (4)
C70.04366 (15)0.2218 (3)0.52873 (13)0.0455 (4)
C80.24393 (15)0.1270 (2)0.53931 (13)0.0438 (4)
C90.31818 (16)−0.0154 (3)0.40544 (13)0.0530 (5)
H9A0.3234−0.13420.42600.064*
H9B0.38980.03980.42500.064*
C100.29539 (15)−0.0079 (3)0.29841 (13)0.0477 (5)
C110.36926 (19)−0.1060 (4)0.15628 (15)0.0689 (6)
H11A0.3349−0.00350.12700.083*
H11B0.3236−0.20410.13450.083*
C120.4835 (2)−0.1258 (5)0.1294 (2)0.1037 (11)
H12A0.5247−0.02120.14240.155*
H12B0.4808−0.15180.06230.155*
H12C0.5205−0.21760.16580.155*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0420 (3)0.0982 (5)0.0482 (3)0.0141 (3)−0.0011 (2)−0.0037 (3)
O10.0460 (8)0.0913 (11)0.0454 (8)0.0093 (7)−0.0038 (6)−0.0176 (7)
O20.0519 (8)0.0904 (12)0.0549 (8)0.0172 (8)0.0059 (7)0.0103 (8)
O30.0517 (8)0.0912 (11)0.0451 (8)0.0174 (8)0.0064 (6)−0.0090 (7)
N10.0373 (8)0.0613 (11)0.0374 (8)0.0036 (7)0.0020 (6)−0.0044 (7)
N20.0394 (8)0.0679 (11)0.0440 (9)0.0061 (8)0.0027 (7)−0.0091 (8)
C10.0392 (9)0.0605 (13)0.0441 (10)0.0027 (9)−0.0004 (8)0.0007 (9)
C20.0479 (11)0.0718 (14)0.0423 (10)−0.0006 (10)0.0049 (8)−0.0038 (10)
C30.0431 (10)0.0649 (14)0.0567 (12)0.0026 (10)0.0109 (9)−0.0082 (10)
C40.0413 (10)0.0695 (14)0.0582 (12)0.0115 (10)0.0030 (9)0.0066 (10)
C50.0427 (10)0.0663 (14)0.0420 (10)0.0027 (10)0.0005 (8)0.0031 (9)
C60.0340 (9)0.0472 (11)0.0437 (9)−0.0023 (8)0.0020 (7)−0.0009 (8)
C70.0403 (9)0.0530 (12)0.0425 (10)−0.0013 (8)0.0000 (8)−0.0003 (8)
C80.0403 (9)0.0491 (11)0.0426 (10)0.0020 (8)0.0069 (8)0.0048 (8)
C90.0486 (11)0.0632 (14)0.0479 (11)0.0103 (10)0.0078 (9)−0.0017 (10)
C100.0407 (10)0.0548 (12)0.0480 (10)−0.0036 (9)0.0075 (8)−0.0022 (9)
C110.0648 (13)0.0956 (18)0.0464 (12)0.0088 (13)0.0057 (10)−0.0100 (12)
C120.0712 (17)0.176 (3)0.0673 (16)0.0198 (19)0.0224 (13)−0.0087 (19)

Geometric parameters (Å, °)

S1—C81.6656 (19)C3—C41.385 (3)
O1—C71.221 (2)C3—H30.9300
O2—C101.194 (2)C4—C51.379 (3)
O3—C101.322 (2)C4—H40.9300
O3—C111.452 (2)C5—C61.387 (3)
N1—C71.380 (2)C5—H50.9300
N1—C81.388 (2)C6—C71.485 (3)
N1—H10.8600C9—C101.500 (3)
N2—C81.320 (2)C9—H9A0.9700
N2—C91.439 (2)C9—H9B0.9700
N2—H20.8600C11—C121.455 (3)
C1—C21.379 (3)C11—H11A0.9700
C1—C61.390 (2)C11—H11B0.9700
C1—H1A0.9300C12—H12A0.9600
C2—C31.370 (3)C12—H12B0.9600
C2—H2A0.9300C12—H12C0.9600
C10—O3—C11118.29 (16)O1—C7—C6121.65 (16)
C7—N1—C8127.91 (15)N1—C7—C6116.19 (15)
C7—N1—H1116.0N2—C8—N1116.61 (15)
C8—N1—H1116.0N2—C8—S1124.54 (14)
C8—N2—C9122.58 (15)N1—C8—S1118.83 (14)
C8—N2—H2118.7N2—C9—C10110.66 (16)
C9—N2—H2118.7N2—C9—H9A109.5
C2—C1—C6120.11 (17)C10—C9—H9A109.5
C2—C1—H1A119.9N2—C9—H9B109.5
C6—C1—H1A119.9C10—C9—H9B109.5
C3—C2—C1120.33 (18)H9A—C9—H9B108.1
C3—C2—H2A119.8O2—C10—O3125.96 (18)
C1—C2—H2A119.8O2—C10—C9125.28 (18)
C2—C3—C4120.14 (18)O3—C10—C9108.75 (16)
C2—C3—H3119.9O3—C11—C12107.9 (2)
C4—C3—H3119.9O3—C11—H11A110.1
C5—C4—C3119.86 (18)C12—C11—H11A110.1
C5—C4—H4120.1O3—C11—H11B110.1
C3—C4—H4120.1C12—C11—H11B110.1
C4—C5—C6120.32 (18)H11A—C11—H11B108.4
C4—C5—H5119.8C11—C12—H12A109.5
C6—C5—H5119.8C11—C12—H12B109.5
C5—C6—C1119.22 (17)H12A—C12—H12B109.5
C5—C6—C7117.04 (16)C11—C12—H12C109.5
C1—C6—C7123.72 (16)H12A—C12—H12C109.5
O1—C7—N1122.16 (17)H12B—C12—H12C109.5
C6—C1—C2—C3−0.6 (3)C5—C6—C7—N1154.41 (18)
C1—C2—C3—C40.6 (3)C1—C6—C7—N1−26.8 (3)
C2—C3—C4—C50.5 (3)C9—N2—C8—N1−178.79 (17)
C3—C4—C5—C6−1.5 (3)C9—N2—C8—S12.7 (3)
C4—C5—C6—C11.5 (3)C7—N1—C8—N21.6 (3)
C4—C5—C6—C7−179.66 (19)C7—N1—C8—S1−179.77 (16)
C2—C1—C6—C5−0.5 (3)C8—N2—C9—C10−158.69 (18)
C2—C1—C6—C7−179.21 (19)C11—O3—C10—O2−1.2 (3)
C8—N1—C7—O1−3.0 (3)C11—O3—C10—C9178.55 (19)
C8—N1—C7—C6177.93 (17)N2—C9—C10—O22.4 (3)
C5—C6—C7—O1−24.7 (3)N2—C9—C10—O3−177.34 (17)
C1—C6—C7—O1154.1 (2)C10—O3—C11—C12153.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.952.633 (2)135
N2—H2···O20.862.432.724 (2)101
C9—H9B···S10.972.703.045 (2)101
N1—H1···O2i0.862.353.164 (2)158
C2—H2A···O1i0.932.513.298 (3)143

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2606).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Ngah, N., Shah, N. M., Kassim, M. B. & Yamin, B. M. (2005). Acta Cryst. E61, o1910–o1912.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Yamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513–o2514.
  • Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151–o152.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography