PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1173–m1174.
Published online 2008 August 16. doi:  10.1107/S160053680802566X
PMCID: PMC2960606

Bis(2,4,6-triamino-1,3,5-triazin-1-ium) bis­(4-hydroxy­pyridine-2,6-carboxyl­ato)­cuprate(II) hexa­hydrate

Abstract

In the title compound, (C3H7N6)2[Cu(C7H3NO5)2]·6H2O, the coordination geometry of the CuII atom can be described as distorted octa­hedral. The equatorial plane is defined by four O atoms from two 4-hydroxy­pyridine-2,6-dicarboxyl­ate ligands. The axial positions are occupied by the N atoms of the same ligands. There is an extensive three-dimensional hydrogen-bond network reinforcing crystal cohesion.

Related literature

For related literature, see: Aghabozorg, Motyeian, Attar Gharamaleki et al. (2008 [triangle]); Aghabozorg, Motyeian, Soleimannejad et al. (2008 [triangle]); Aghabozorg, Saadaty et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1173-scheme1.jpg

Experimental

Crystal data

  • (C3H7N6)2[Cu(C7H3NO5)2]·6H2O
  • M r = 788.14
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1173-efi1.jpg
  • a = 11.2894 (3) Å
  • b = 37.7699 (12) Å
  • c = 7.3414 (2) Å
  • β = 94.016 (2)°
  • V = 3122.68 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.80 mm−1
  • T = 293 (2) K
  • 0.28 × 0.20 × 0.10 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.714, T max = 0.919
  • 22082 measured reflections
  • 7390 independent reflections
  • 5112 reflections with I > 2σ(I)
  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.116
  • S = 1.02
  • 7390 reflections
  • 508 parameters
  • 13 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680802566X/bt2763sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802566X/bt2763Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Following our research on the synthesis of proton transfer compounds that can function as suitable ligands in the synthesis of metal complexes (Aghabozorg, Motyeian, Attar Gharamaleki et al., 2008; Aghabozorg, Motyeian, Soleimannejad et al., 2008; Aghabozorg, Saadaty et al., 2008), we have obtained the title compound dimelaminium bis(4-hydroxypyridine-2,6-carboxylato)cuprate(II) hexahydrated. 4-hydroxypyridine-2,6-carboxylic acid (hypydcH2) was chosen as a proton donor and melamine (tata) as the proton acceptor.

The asymmetric unit of (I) consists of two melaminium (tataH) residues protonated at one ring N atom, two (hypydc) residues coordinating a CuII ion and six water molecules (Fig. 1). The melaminium cations are essentially planar with the weighted average absolute torsion angle equal to 0.67 (23) for ring A and 1.20 (33)° for ring B. Both rings exhibit a significant distortion from the ideal hexagonal form. The internal C—N—C angle of the protonated N atom (N5A, N5B) is significantly larger than the other two ring C—N—C angles (Table 1). The angle between the least-squares plane of the two independent cations is 87.97 (12)°. The anions also assemble perpendicularly to each other. The angle between the mean planes of the two independent pyridil rings is 89.51 (12)°. Thus the molecules form a square grid with channels along the b axis (Fig. 2). The CuII ion is coordinated octahedrally by two ligands of (hypydc). The N atoms of the two independent anions occupy the axial positions while four oxygen atoms form the equatorial plane. There is an extensive network of hydrogen bonds proportionated by the large amount of water molecules. All the water molecules share their hydrogen atoms with another strong acceptor (N,O). The (hypydc) anions have similar H-bonds, but the two independent melaminium cations have different roles in the web of H-bonds. While B molecules only establish H-bonds to neighbouring water or (hypydc) molecules, the A molecules are also joined in dimers (Fig.3, Table 2).

Experimental

The proton transfer compound, (tata)2(hypydc), was prepared by the reaction of 4-hydroxypyridinee-2,6-dicarboxylic acid, hypydcH2, with melamine, (tata). The reaction between Cu(NO3)2.6H2O (143 mg, 0.5 mmol) in water (20 ml) and proton transfer compound, (phenH)2(hypydc) (253 mg, 1.0 mmol) in water (20 ml), in a 1:2 molar ratio was carried out and a blue crystalline compound was obtained by the slow evaporation of the solvent at room temperature.

Refinement

All H-atoms could be located in difference Fourier maps. The H atoms of water molecules were refined with an O—H distance restraint of 0.85 (2) Å and Uiso(H) = 1.5Ueq(O). Short contacts between the H atoms of the water O10 and neighbouring H atoms are observed at the final refinement, an indication that these H atoms are probably disordered. The coordinates of the H atoms of the hydroxyl groups were freely refined with Uiso(H) = 1.5Ueq(O), the H atoms bonded to the N atoms of the melaminium rings were restrained to have equal N—H distances and Uiso(H) = 1.2Ueq(N). The remaining H atoms were placed at calculated positions and refined as riding on their parent atoms with Uiso(H) = 1.2Ueq(N,C)

Figures

Fig. 1.
ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the 50% level.
Fig. 2.
Packing diagram of the title compound. Water molecules were excluded for clarity.
Fig. 3.
A part of the extensive three-dimensional H-bond network. H-bonds are depicted as dashed lines.

Crystal data

(C3H7N6)2[Cu(C7H3N1O5)2]·6H2OF000 = 1628
Mr = 788.14Dx = 1.676 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
a = 11.2894 (3) ÅCell parameters from 4074 reflections
b = 37.7699 (12) Åθ = 2.4–24.5º
c = 7.3414 (2) ŵ = 0.80 mm1
β = 94.016 (2)ºT = 293 (2) K
V = 3122.68 (15) Å3Prism, green
Z = 40.28 × 0.20 × 0.10 mm

Data collection

Bruker APEX CCD area-detector diffractometer7390 independent reflections
Radiation source: fine-focus sealed tube5112 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.054
T = 293(2) Kθmax = 28.3º
[var phi] and ω scansθmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 2000)h = −15→14
Tmin = 0.714, Tmax = 0.919k = −50→50
22082 measured reflectionsl = −7→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116  w = 1/[σ2(Fo2) + (0.0572P)2 + 0.0192P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.014
7390 reflectionsΔρmax = 0.44 e Å3
508 parametersΔρmin = −0.46 e Å3
13 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.43767 (3)0.864573 (8)0.43487 (5)0.02540 (10)
O1A0.62393 (18)0.71521 (5)0.5449 (3)0.0339 (5)
H1A0.584 (3)0.7012 (9)0.503 (5)0.051*
O1B0.31432 (19)1.01748 (5)0.5212 (3)0.0363 (5)
H1B0.335 (3)1.0291 (9)0.446 (5)0.054*
O2A0.26377 (16)0.77504 (5)0.2033 (3)0.0382 (5)
O2B0.5124 (2)0.93825 (6)0.0457 (3)0.0532 (7)
O3A0.29856 (16)0.83148 (5)0.2762 (3)0.0321 (4)
O3B0.50694 (17)0.88676 (5)0.1949 (3)0.0339 (5)
O4A0.75786 (16)0.83882 (5)0.7359 (3)0.0356 (5)
O4B0.2249 (2)0.89919 (5)0.8309 (3)0.0524 (7)
O5A0.61471 (17)0.87161 (5)0.5943 (3)0.0368 (5)
O5B0.32894 (17)0.86291 (5)0.6639 (3)0.0313 (4)
N1A0.50099 (18)0.81629 (5)0.4577 (3)0.0218 (4)
N1B0.38376 (18)0.91274 (5)0.4434 (3)0.0235 (5)
C1A0.6033 (2)0.80997 (6)0.5575 (4)0.0218 (5)
C1B0.3243 (2)0.92336 (7)0.5850 (4)0.0255 (6)
C2A0.6461 (2)0.77631 (6)0.5867 (4)0.0245 (6)
H2A0.71770.77260.65480.029*
C2B0.2994 (2)0.95844 (7)0.6138 (4)0.0299 (6)
H2B0.25800.96550.71290.036*
C3A0.5813 (2)0.74770 (6)0.5132 (4)0.0239 (5)
C3B0.3381 (2)0.98330 (6)0.4897 (4)0.0272 (6)
C4A0.4744 (2)0.75443 (7)0.4131 (4)0.0248 (6)
H4A0.42830.73580.36460.030*
C4B0.3979 (2)0.97189 (7)0.3412 (4)0.0272 (6)
H4B0.42260.98800.25580.033*
C5A0.4376 (2)0.78907 (6)0.3866 (4)0.0222 (5)
C5B0.4196 (2)0.93624 (7)0.3236 (4)0.0249 (6)
C6A0.3237 (2)0.79909 (7)0.2795 (4)0.0257 (6)
C6B0.4848 (2)0.91968 (7)0.1720 (4)0.0303 (6)
C7A0.6650 (2)0.84270 (6)0.6363 (4)0.0250 (6)
C7B0.2893 (2)0.89329 (7)0.7058 (4)0.0305 (6)
N3A0.0763 (2)0.99122 (6)0.2789 (3)0.0325 (5)
N4A0.1682 (2)0.99282 (6)−0.0069 (3)0.0342 (6)
N5A0.1108 (2)1.04478 (6)0.1332 (4)0.0341 (6)
H5A0.099 (3)1.0648 (7)0.133 (5)0.041*
N6A0.1337 (2)0.94103 (6)0.1355 (4)0.0390 (6)
H70.16470.93040.04670.047*
H80.10790.92890.22370.047*
N7A0.1989 (2)1.04682 (7)−0.1378 (4)0.0460 (7)
H110.22941.0367−0.22840.055*
H120.19341.0695−0.13440.055*
N8A0.0229 (2)1.04431 (7)0.4041 (4)0.0476 (7)
H9−0.00451.03340.49490.057*
H100.01951.06700.39830.057*
C8A0.1257 (2)0.97605 (7)0.1365 (4)0.0306 (6)
C9A0.1607 (2)1.02764 (7)−0.0048 (4)0.0342 (7)
C10A0.0699 (2)1.02625 (7)0.2739 (4)0.0336 (7)
N3B0.88638 (18)0.76048 (6)0.3504 (3)0.0289 (5)
N4B1.0116 (2)0.80888 (6)0.4584 (3)0.0321 (5)
N5B1.06806 (18)0.75026 (6)0.5151 (3)0.0266 (5)
H5B1.114 (2)0.7379 (7)0.567 (4)0.032*
N6B0.8337 (2)0.81741 (6)0.2915 (4)0.0395 (6)
H50.77030.80940.23380.047*
H60.84580.83990.29900.047*
N7B1.1849 (2)0.79554 (6)0.6287 (3)0.0347 (6)
H11.20060.81770.64420.042*
H21.23290.77980.67580.042*
N8B0.95084 (19)0.70392 (6)0.4094 (3)0.0330 (6)
H30.88790.69570.35180.040*
H41.00360.68970.45770.040*
C8B0.9664 (2)0.73824 (7)0.4237 (4)0.0255 (6)
C9B1.0871 (2)0.78572 (7)0.5325 (4)0.0262 (6)
C10B0.9134 (2)0.79486 (7)0.3697 (4)0.0286 (6)
O60.6260 (2)0.93858 (5)0.7253 (3)0.0433 (6)
H610.620 (3)0.9180 (6)0.684 (5)0.065*
H620.580 (3)0.9381 (10)0.805 (4)0.065*
O70.4746 (2)0.83354 (6)0.9426 (3)0.0472 (6)
H710.469 (3)0.8491 (8)1.020 (4)0.071*
H720.429 (3)0.8401 (10)0.857 (4)0.071*
O80.1197 (2)0.84896 (6)0.0289 (4)0.0508 (6)
H810.150 (3)0.8641 (9)−0.041 (5)0.076*
H820.168 (3)0.8391 (10)0.104 (5)0.076*
O90.7422 (2)0.87866 (6)0.0878 (4)0.0527 (6)
H910.672 (2)0.8828 (11)0.127 (6)0.079*
H920.750 (4)0.8675 (10)−0.015 (4)0.079*
O100.9382 (2)0.88564 (6)0.7704 (5)0.0662 (8)
H1010.984 (4)0.8704 (10)0.821 (6)0.099*
H1020.894 (4)0.8820 (13)0.864 (5)0.099*
O110.0445 (5)0.88589 (8)0.3782 (7)0.1234 (17)
H1110.030 (7)0.878 (2)0.481 (5)0.185*
H1120.088 (6)0.8685 (13)0.362 (12)0.185*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.02778 (17)0.01879 (16)0.0296 (2)0.00051 (12)0.00170 (13)−0.00093 (13)
O1A0.0396 (12)0.0164 (9)0.0439 (13)0.0007 (8)−0.0101 (9)−0.0015 (8)
O1B0.0498 (12)0.0172 (10)0.0435 (14)0.0027 (8)0.0149 (10)0.0008 (8)
O2A0.0343 (11)0.0276 (10)0.0501 (14)−0.0027 (8)−0.0156 (10)−0.0076 (9)
O2B0.0761 (16)0.0373 (12)0.0501 (16)0.0082 (11)0.0337 (13)0.0108 (11)
O3A0.0336 (10)0.0225 (9)0.0390 (13)0.0026 (8)−0.0065 (9)0.0010 (8)
O3B0.0428 (11)0.0214 (10)0.0382 (13)0.0037 (8)0.0069 (10)−0.0046 (8)
O4A0.0291 (10)0.0250 (10)0.0502 (14)−0.0024 (8)−0.0150 (9)−0.0037 (9)
O4B0.0794 (16)0.0281 (11)0.0549 (16)0.0079 (10)0.0410 (14)0.0079 (10)
O5A0.0377 (11)0.0191 (9)0.0518 (14)0.0035 (8)−0.0100 (10)−0.0060 (9)
O5B0.0417 (11)0.0202 (9)0.0323 (12)0.0045 (8)0.0037 (9)0.0014 (8)
N1A0.0245 (11)0.0182 (10)0.0227 (12)0.0002 (8)0.0017 (9)−0.0011 (8)
N1B0.0254 (11)0.0198 (10)0.0254 (13)0.0028 (8)0.0027 (9)0.0027 (9)
C1A0.0229 (12)0.0201 (12)0.0224 (15)0.0000 (9)0.0015 (10)−0.0030 (10)
C1B0.0246 (12)0.0234 (13)0.0287 (16)0.0009 (10)0.0038 (11)0.0015 (11)
C2A0.0220 (12)0.0212 (12)0.0302 (16)0.0006 (9)0.0000 (11)−0.0023 (11)
C2B0.0301 (14)0.0250 (13)0.0351 (17)0.0031 (11)0.0067 (12)0.0001 (12)
C3A0.0292 (13)0.0183 (12)0.0245 (15)0.0009 (10)0.0030 (11)−0.0001 (10)
C3B0.0262 (13)0.0193 (12)0.0360 (17)0.0021 (10)0.0019 (12)0.0022 (11)
C4A0.0262 (13)0.0190 (12)0.0289 (16)−0.0027 (10)−0.0002 (11)−0.0036 (10)
C4B0.0276 (13)0.0224 (13)0.0318 (17)−0.0022 (10)0.0037 (12)0.0043 (11)
C5A0.0229 (12)0.0206 (12)0.0232 (15)−0.0019 (9)0.0012 (11)−0.0022 (10)
C5B0.0245 (13)0.0226 (13)0.0275 (16)0.0005 (10)0.0017 (11)0.0003 (11)
C6A0.0271 (13)0.0246 (13)0.0253 (16)−0.0013 (10)0.0012 (11)0.0010 (11)
C6B0.0327 (14)0.0274 (14)0.0311 (17)−0.0013 (11)0.0051 (12)−0.0003 (12)
C7A0.0260 (13)0.0176 (12)0.0314 (16)−0.0025 (10)0.0029 (11)−0.0035 (10)
C7B0.0362 (15)0.0222 (13)0.0335 (18)0.0020 (11)0.0044 (13)0.0031 (11)
N3A0.0371 (13)0.0240 (12)0.0367 (15)0.0024 (10)0.0031 (11)−0.0027 (10)
N4A0.0379 (13)0.0278 (12)0.0371 (16)0.0018 (10)0.0047 (11)−0.0040 (10)
N5A0.0375 (13)0.0211 (11)0.0445 (16)−0.0004 (10)0.0073 (12)−0.0027 (11)
N6A0.0495 (15)0.0254 (12)0.0430 (17)0.0028 (10)0.0098 (13)−0.0018 (11)
N7A0.0574 (17)0.0341 (14)0.0485 (18)−0.0038 (12)0.0171 (14)−0.0009 (13)
N8A0.0653 (18)0.0277 (13)0.0522 (19)0.0046 (12)0.0208 (15)−0.0060 (12)
C8A0.0267 (14)0.0267 (14)0.0375 (18)0.0016 (11)−0.0036 (12)−0.0017 (12)
C9A0.0279 (14)0.0334 (15)0.0410 (19)−0.0029 (11)0.0008 (13)−0.0005 (13)
C10A0.0313 (14)0.0299 (15)0.0396 (19)−0.0003 (11)0.0022 (13)−0.0051 (13)
N3B0.0258 (11)0.0269 (12)0.0334 (14)0.0040 (9)−0.0026 (10)0.0041 (10)
N4B0.0325 (12)0.0230 (11)0.0409 (15)0.0012 (9)0.0030 (11)0.0018 (10)
N5B0.0228 (11)0.0196 (11)0.0364 (15)0.0029 (8)−0.0044 (10)0.0044 (9)
N6B0.0369 (13)0.0314 (13)0.0493 (17)0.0109 (10)−0.0036 (12)0.0092 (12)
N7B0.0344 (13)0.0228 (12)0.0458 (17)−0.0043 (10)−0.0054 (11)−0.0004 (10)
N8B0.0282 (12)0.0222 (11)0.0469 (17)−0.0009 (9)−0.0087 (11)0.0000 (10)
C8B0.0223 (12)0.0265 (14)0.0280 (16)−0.0016 (10)0.0032 (11)0.0007 (11)
C9B0.0260 (13)0.0231 (13)0.0296 (16)−0.0020 (10)0.0036 (11)0.0012 (11)
C10B0.0296 (14)0.0273 (14)0.0293 (16)0.0039 (11)0.0041 (12)0.0043 (11)
O60.0679 (16)0.0225 (10)0.0415 (15)−0.0086 (10)0.0179 (11)−0.0008 (10)
O70.0685 (16)0.0315 (12)0.0393 (15)0.0207 (11)−0.0129 (12)−0.0065 (10)
O80.0402 (13)0.0409 (13)0.0688 (19)−0.0105 (10)−0.0137 (12)0.0193 (12)
O90.0477 (14)0.0393 (13)0.071 (2)0.0071 (11)0.0057 (13)0.0026 (12)
O100.0493 (16)0.0298 (13)0.119 (3)−0.0038 (11)−0.0005 (16)0.0053 (14)
O110.201 (5)0.0406 (18)0.139 (4)−0.011 (2)0.086 (3)0.004 (2)

Geometric parameters (Å, °)

Cu1—N1B1.921 (2)N4A—C8A1.346 (4)
Cu1—N1A1.962 (2)N5A—C10A1.355 (4)
Cu1—O3B2.147 (2)N5A—C9A1.357 (4)
Cu1—O5B2.1508 (19)N5A—H5A0.77 (2)
Cu1—O5A2.260 (2)N6A—C8A1.326 (3)
Cu1—O3A2.2648 (19)N6A—H70.8600
O1A—C3A1.333 (3)N6A—H80.8600
O1A—H1A0.74 (3)N7A—C9A1.313 (4)
O1B—C3B1.342 (3)N7A—H110.8600
O1B—H1B0.76 (4)N7A—H120.8600
O2A—C6A1.242 (3)N8A—C10A1.316 (4)
O2B—C6B1.221 (3)N8A—H90.8600
O3A—C6A1.256 (3)N8A—H100.8600
O3B—C6B1.277 (3)N3B—C8B1.321 (3)
O4A—C7A1.244 (3)N3B—C10B1.339 (3)
O4B—C7B1.231 (3)N4B—C9B1.312 (3)
O5A—C7A1.259 (3)N4B—C10B1.353 (4)
O5B—C7B1.277 (3)N5B—C9B1.361 (3)
N1A—C5A1.338 (3)N5B—C8B1.365 (3)
N1A—C1A1.345 (3)N5B—H5B0.78 (2)
N1B—C5B1.332 (3)N6B—C10B1.339 (3)
N1B—C1B1.338 (3)N6B—H50.8600
C1A—C2A1.372 (3)N6B—H60.8600
C1A—C7A1.514 (3)N7B—C9B1.322 (3)
C1B—C2B1.374 (4)N7B—H10.8600
C1B—C7B1.510 (4)N7B—H20.8600
C2A—C3A1.393 (3)N8B—C8B1.311 (3)
C2A—H2A0.9300N8B—H30.8600
C2B—C3B1.400 (4)N8B—H40.8600
C2B—H2B0.9300O6—H610.834 (18)
C3A—C4A1.391 (4)O6—H620.808 (18)
C3B—C4B1.390 (4)O7—H710.821 (18)
C4A—C5A1.382 (3)O7—H720.821 (19)
C4A—H4A0.9300O8—H810.86 (4)
C4B—C5B1.377 (3)O8—H820.84 (4)
C4B—H4B0.9300O9—H910.877 (18)
C5A—C6A1.507 (4)O9—H920.876 (19)
C5B—C6B1.512 (4)O10—H1010.84 (4)
N3A—C10A1.325 (3)O10—H1020.89 (4)
N3A—C8A1.347 (4)O11—H1110.85 (2)
N4A—C9A1.318 (3)O11—H1120.83 (6)
N1B—Cu1—N1A172.83 (10)O2B—C6B—C5B119.0 (2)
N1B—Cu1—O3B77.96 (8)O3B—C6B—C5B114.0 (2)
N1A—Cu1—O3B106.34 (8)O4A—C7A—O5A126.4 (2)
N1B—Cu1—O5B78.63 (8)O4A—C7A—C1A118.3 (2)
N1A—Cu1—O5B97.51 (8)O5A—C7A—C1A115.3 (2)
O3B—Cu1—O5B155.97 (7)O4B—C7B—O5B125.3 (3)
N1B—Cu1—O5A98.19 (8)O4B—C7B—C1B119.6 (2)
N1A—Cu1—O5A76.19 (8)O5B—C7B—C1B115.1 (2)
O3B—Cu1—O5A91.11 (8)C10A—N3A—C8A115.3 (2)
O5B—Cu1—O5A97.53 (8)C9A—N4A—C8A115.7 (2)
N1B—Cu1—O3A109.24 (8)C10A—N5A—C9A120.3 (2)
N1A—Cu1—O3A76.48 (8)C10A—N5A—H5A116 (2)
O3B—Cu1—O3A94.16 (7)C9A—N5A—H5A123 (2)
O5B—Cu1—O3A88.44 (7)C8A—N6A—H7120.0
O5A—Cu1—O3A152.56 (6)C8A—N6A—H8120.0
C3A—O1A—H1A112 (3)H7—N6A—H8120.0
C3B—O1B—H1B111 (3)C9A—N7A—H11120.0
C6A—O3A—Cu1112.32 (16)C9A—N7A—H12120.0
C6B—O3B—Cu1114.11 (17)H11—N7A—H12120.0
C7A—O5A—Cu1113.08 (16)C10A—N8A—H9120.0
C7B—O5B—Cu1113.01 (17)C10A—N8A—H10120.0
C5A—N1A—C1A119.4 (2)H9—N8A—H10120.0
C5A—N1A—Cu1119.96 (17)N6A—C8A—N4A115.9 (3)
C1A—N1A—Cu1120.37 (16)N6A—C8A—N3A117.4 (3)
C5B—N1B—C1B120.4 (2)N4A—C8A—N3A126.7 (2)
C5B—N1B—Cu1119.86 (17)N7A—C9A—N4A121.1 (3)
C1B—N1B—Cu1119.10 (17)N7A—C9A—N5A117.8 (3)
N1A—C1A—C2A122.0 (2)N4A—C9A—N5A121.0 (3)
N1A—C1A—C7A114.7 (2)N8A—C10A—N3A121.4 (3)
C2A—C1A—C7A123.3 (2)N8A—C10A—N5A117.5 (3)
N1B—C1B—C2B121.9 (2)N3A—C10A—N5A121.0 (3)
N1B—C1B—C7B113.4 (2)C8B—N3B—C10B115.4 (2)
C2B—C1B—C7B124.7 (2)C9B—N4B—C10B115.2 (2)
C1A—C2A—C3A119.2 (2)C9B—N5B—C8B119.7 (2)
C1A—C2A—H2A120.4C9B—N5B—H5B117 (2)
C3A—C2A—H2A120.4C8B—N5B—H5B123 (2)
C1B—C2B—C3B118.0 (2)C10B—N6B—H5120.0
C1B—C2B—H2B121.0C10B—N6B—H6120.0
C3B—C2B—H2B121.0H5—N6B—H6120.0
O1A—C3A—C4A123.4 (2)C9B—N7B—H1120.0
O1A—C3A—C2A118.2 (2)C9B—N7B—H2120.0
C4A—C3A—C2A118.4 (2)H1—N7B—H2120.0
O1B—C3B—C4B123.2 (2)C8B—N8B—H3120.0
O1B—C3B—C2B117.2 (2)C8B—N8B—H4120.0
C4B—C3B—C2B119.6 (2)H3—N8B—H4120.0
C5A—C4A—C3A119.2 (2)N8B—C8B—N3B120.8 (2)
C5A—C4A—H4A120.4N8B—C8B—N5B118.1 (2)
C3A—C4A—H4A120.4N3B—C8B—N5B121.1 (2)
C5B—C4B—C3B118.5 (2)N4B—C9B—N7B121.9 (2)
C5B—C4B—H4B120.8N4B—C9B—N5B121.5 (2)
C3B—C4B—H4B120.8N7B—C9B—N5B116.5 (2)
N1A—C5A—C4A121.7 (2)N3B—C10B—N6B115.5 (3)
N1A—C5A—C6A115.1 (2)N3B—C10B—N4B127.1 (2)
C4A—C5A—C6A123.2 (2)N6B—C10B—N4B117.4 (2)
N1B—C5B—C4B121.7 (2)H61—O6—H62101 (3)
N1B—C5B—C6B113.4 (2)H71—O7—H72104 (4)
C4B—C5B—C6B125.0 (2)H81—O8—H82116 (4)
O2A—C6A—O3A126.0 (3)H91—O9—H92121 (4)
O2A—C6A—C5A118.0 (2)H101—O10—H10285 (4)
O3A—C6A—C5A116.0 (2)H111—O11—H11289 (6)
O2B—C6B—O3B126.9 (3)
N1B—Cu1—O3A—C6A−174.06 (18)C1A—N1A—C5A—C4A0.1 (4)
N1A—Cu1—O3A—C6A1.43 (18)Cu1—N1A—C5A—C4A−174.41 (19)
O3B—Cu1—O3A—C6A107.24 (18)C1A—N1A—C5A—C6A179.2 (2)
O5B—Cu1—O3A—C6A−96.68 (18)Cu1—N1A—C5A—C6A4.7 (3)
O5A—Cu1—O3A—C6A6.7 (3)C3A—C4A—C5A—N1A−1.3 (4)
N1B—Cu1—O3B—C6B1.61 (19)C3A—C4A—C5A—C6A179.7 (2)
N1A—Cu1—O3B—C6B−172.46 (19)C1B—N1B—C5B—C4B0.4 (4)
O5B—Cu1—O3B—C6B14.9 (3)Cu1—N1B—C5B—C4B−170.2 (2)
O5A—Cu1—O3B—C6B−96.53 (19)C1B—N1B—C5B—C6B−179.7 (2)
O3A—Cu1—O3B—C6B110.41 (19)Cu1—N1B—C5B—C6B9.8 (3)
N1B—Cu1—O5A—C7A169.77 (19)C3B—C4B—C5B—N1B0.8 (4)
N1A—Cu1—O5A—C7A−5.67 (19)C3B—C4B—C5B—C6B−179.2 (3)
O3B—Cu1—O5A—C7A−112.23 (19)Cu1—O3A—C6A—O2A−179.5 (2)
O5B—Cu1—O5A—C7A90.25 (19)Cu1—O3A—C6A—C5A0.5 (3)
O3A—Cu1—O5A—C7A−11.0 (3)N1A—C5A—C6A—O2A176.8 (2)
N1B—Cu1—O5B—C7B−5.00 (19)C4A—C5A—C6A—O2A−4.1 (4)
N1A—Cu1—O5B—C7B168.87 (19)N1A—C5A—C6A—O3A−3.2 (3)
O3B—Cu1—O5B—C7B−18.3 (3)C4A—C5A—C6A—O3A175.9 (2)
O5A—Cu1—O5B—C7B91.90 (19)Cu1—O3B—C6B—O2B−178.7 (3)
O3A—Cu1—O5B—C7B−114.98 (19)Cu1—O3B—C6B—C5B2.8 (3)
N1B—Cu1—N1A—C5A140.1 (6)N1B—C5B—C6B—O2B173.5 (3)
O3B—Cu1—N1A—C5A−93.80 (19)C4B—C5B—C6B—O2B−6.5 (4)
O5B—Cu1—N1A—C5A83.18 (19)N1B—C5B—C6B—O3B−7.8 (3)
O5A—Cu1—N1A—C5A179.1 (2)C4B—C5B—C6B—O3B172.1 (3)
O3A—Cu1—N1A—C5A−3.38 (18)Cu1—O5A—C7A—O4A−173.7 (2)
N1B—Cu1—N1A—C1A−34.3 (8)Cu1—O5A—C7A—C1A5.5 (3)
O3B—Cu1—N1A—C1A91.79 (19)N1A—C1A—C7A—O4A177.3 (2)
O5B—Cu1—N1A—C1A−91.23 (19)C2A—C1A—C7A—O4A−1.6 (4)
O5A—Cu1—N1A—C1A4.72 (18)N1A—C1A—C7A—O5A−2.0 (3)
O3A—Cu1—N1A—C1A−177.8 (2)C2A—C1A—C7A—O5A179.1 (2)
N1A—Cu1—N1B—C5B121.0 (6)Cu1—O5B—C7B—O4B179.7 (3)
O3B—Cu1—N1B—C5B−6.50 (19)Cu1—O5B—C7B—C1B1.3 (3)
O5B—Cu1—N1B—C5B179.0 (2)N1B—C1B—C7B—O4B−173.3 (3)
O5A—Cu1—N1B—C5B82.9 (2)C2B—C1B—C7B—O4B6.8 (5)
O3A—Cu1—N1B—C5B−96.7 (2)N1B—C1B—C7B—O5B5.2 (4)
N1A—Cu1—N1B—C1B−49.6 (7)C2B—C1B—C7B—O5B−174.7 (3)
O3B—Cu1—N1B—C1B−177.1 (2)C9A—N4A—C8A—N6A−179.6 (3)
O5B—Cu1—N1B—C1B8.34 (19)C9A—N4A—C8A—N3A0.4 (4)
O5A—Cu1—N1B—C1B−87.8 (2)C10A—N3A—C8A—N6A−179.8 (3)
O3A—Cu1—N1B—C1B92.6 (2)C10A—N3A—C8A—N4A0.1 (4)
C5A—N1A—C1A—C2A1.1 (4)C8A—N4A—C9A—N7A−179.7 (3)
Cu1—N1A—C1A—C2A175.49 (19)C8A—N4A—C9A—N5A−1.2 (4)
C5A—N1A—C1A—C7A−177.9 (2)C10A—N5A—C9A—N7A180.0 (3)
Cu1—N1A—C1A—C7A−3.5 (3)C10A—N5A—C9A—N4A1.4 (4)
C5B—N1B—C1B—C2B−0.7 (4)C8A—N3A—C10A—N8A179.5 (3)
Cu1—N1B—C1B—C2B169.8 (2)C8A—N3A—C10A—N5A0.0 (4)
C5B—N1B—C1B—C7B179.4 (2)C9A—N5A—C10A—N8A179.7 (3)
Cu1—N1B—C1B—C7B−10.0 (3)C9A—N5A—C10A—N3A−0.8 (4)
N1A—C1A—C2A—C3A−0.9 (4)C10B—N3B—C8B—N8B−178.3 (2)
C7A—C1A—C2A—C3A178.0 (2)C10B—N3B—C8B—N5B1.1 (4)
N1B—C1B—C2B—C3B0.0 (4)C9B—N5B—C8B—N8B−180.0 (2)
C7B—C1B—C2B—C3B179.9 (3)C9B—N5B—C8B—N3B0.5 (4)
C1A—C2A—C3A—O1A−179.3 (2)C10B—N4B—C9B—N7B−177.6 (2)
C1A—C2A—C3A—C4A−0.3 (4)C10B—N4B—C9B—N5B1.9 (4)
C1B—C2B—C3B—O1B−179.1 (2)C8B—N5B—C9B—N4B−2.2 (4)
C1B—C2B—C3B—C4B1.2 (4)C8B—N5B—C9B—N7B177.4 (2)
O1A—C3A—C4A—C5A−179.7 (2)C8B—N3B—C10B—N6B178.4 (2)
C2A—C3A—C4A—C5A1.4 (4)C8B—N3B—C10B—N4B−1.5 (4)
O1B—C3B—C4B—C5B178.8 (3)C9B—N4B—C10B—N3B0.0 (4)
C2B—C3B—C4B—C5B−1.5 (4)C9B—N4B—C10B—N6B−179.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1A—H1A···O7i0.74 (3)1.84 (3)2.573 (3)169 (4)
O1B—H1B···O6ii0.76 (4)1.83 (4)2.579 (3)173 (4)
N5A—H5A···O10ii0.77 (2)2.06 (3)2.787 (3)159 (3)
N6A—H7···O4Biii0.862.132.980 (3)173
N6A—H8···O110.862.132.962 (4)162
N7A—H11···O1Biii0.862.253.106 (3)172
N7A—H12···O9iv0.862.112.910 (4)155
N8A—H9···N3Av0.862.112.973 (4)177
N8A—H10···O10ii0.862.252.986 (4)144
N8A—H10···O11v0.862.563.202 (4)133
N5B—H5B···O2Avi0.78 (2)1.96 (3)2.698 (3)157 (3)
N6B—H5···O1Ai0.862.283.131 (3)170
N6B—H6···O90.862.382.905 (3)120
N7B—H1···O5Bvii0.862.243.021 (3)151
N7B—H2···O2Avi0.862.112.852 (3)144
N8B—H3···O4Ai0.862.102.930 (3)163
N8B—H4···O8vi0.862.012.857 (3)169
O6—H61···O5A0.83 (2)1.87 (2)2.706 (3)177 (4)
O6—H62···O2Bviii0.81 (2)1.97 (2)2.756 (3)163 (4)
O7—H71···O3Bviii0.82 (2)1.94 (2)2.741 (3)163 (4)
O7—H72···O5B0.82 (2)1.95 (2)2.766 (3)171 (4)
O8—H81···O4Biii0.86 (2)1.86 (2)2.714 (3)173 (4)
O8—H82···O3A0.83 (2)1.90 (2)2.701 (3)162 (4)
O9—H91···O3B0.88 (2)1.97 (2)2.839 (3)172 (4)
O9—H92···O4Aiii0.88 (2)2.13 (2)3.005 (3)176 (4)
O10—H101···O8ix0.84 (4)2.24 (3)3.030 (4)157 (5)
O10—H102···O4A0.89 (4)2.39 (5)2.695 (3)101 (4)
O11—H111···O10x0.85 (2)2.44 (4)3.196 (5)149 (7)
O11—H112···N4Bx0.83 (6)2.53 (7)2.996 (4)116 (6)
O11—H112···O80.83 (6)2.60 (8)3.090 (5)118 (7)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+2, −z+1; (iii) x, y, z−1; (iv) −x+1, −y+2, −z; (v) −x, −y+2, −z+1; (vi) x+1, −y+3/2, z+1/2; (vii) x+1, y, z; (viii) x, y, z+1; (ix) x+1, y, z+1; (x) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2763).

References

  • Aghabozorg, H., Motyeian, E., Attar Gharamaleki, J., Soleimannejad, J., Ghadermazi, M. & Spey Sharon, E. (2008). Acta Cryst. E64, m144–m145.
  • Aghabozorg, H., Motyeian, E., Soleimannejad, J., Ghadermazi, M. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, m252–m253.
  • Aghabozorg, H., Saadaty, S., Motyeian, E., Ghadermazi, M. & Manteghi, F. (2008). Acta Cryst. E64, m466–m467. [PMC free article] [PubMed]
  • Bruker (2003). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography