PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1753.
Published online 2008 August 13. doi:  10.1107/S1600536808025567
PMCID: PMC2960605

Piperidinium 3-hydr­oxy-2-naphthoate

Abstract

The crystals of the title salt, C5H12N+·C11H7O3 , were obtained from a methanol/water solution of 3-hydr­oxy-2-naphthoic acid and piperidine at room temperature. In the crystal structure, the piperidinium cations display a chair conformation and link with hydroxy­naphthoate anions via N—H(...)O and C—H(...)O hydrogen bonds. An intra­molecular O—H(...)O inter­action is also present.

Related literature

For background, see: Shen et al. (2008 [triangle]); Wang et al. (2005a [triangle],b [triangle], 2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1753-scheme1.jpg

Experimental

Crystal data

  • C5H12N+·C11H7O3
  • M r = 273.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1753-efi1.jpg
  • a = 8.6683 (3) Å
  • b = 19.4537 (5) Å
  • c = 9.5932 (3) Å
  • β = 111.959 (2)°
  • V = 1500.34 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 298 (2) K
  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 10640 measured reflections
  • 3385 independent reflections
  • 1512 reflections with I > σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.160
  • S = 0.99
  • 3385 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808025567/xu2446sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025567/xu2446Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Y-TW thanks the Starting Fund of Shandong Institute of Light Industry for financial support.

supplementary crystallographic information

Comment

In some biological system, intermolecular interactions play the important role (Shen et al., 2008), these interactions have attracted our much attention in past years. A series of compounds with weak intermolecular interactions have been synthesized and their crystal structures have been characterized (Wang et al., 2005a,b, 2006). As part of our investigation, we recently prepared the title compound and present here its crystal structure.

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit contains one 3-hydroxy-2-naphthoate anion and one piperidinium cation. The piperidinium cation displays a typical chair conformation. The carboxylate group is coplanar with the naphthalene ring. Intermolecular N—H···O and C—H···O hydrogen bonding presents in the crystal structure (Table 1).

Experimental

3-Hydroxy-2-naphthoic acid (94 mg, 0.5 mmol) and piperidine (43 mg, 0.5 mmol) were dissolved in methanol (5 ml) and water (1 ml) at room temperature. The single crystals of the title compound were obtained from the solution after several days.

Refinement

H atoms were placed in calculated positions with O—H = 0.82, N—H = 0.96, C—H = 0.93 (aromatic) or 0.97 Å (methylene), and refined in riding mode with Uiso(H) = 1.5Ueq(O,N) and 1.2Uiso(C).

Figures

Fig. 1.
A drawing of (I), with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C5H12N+·C11H7O3F(000) = 584
Mr = 273.32Dx = 1.210 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1627 reflections
a = 8.6683 (3) Åθ = 2.5–20.5°
b = 19.4537 (5) ŵ = 0.08 mm1
c = 9.5932 (3) ÅT = 298 K
β = 111.959 (2)°Block, colourless
V = 1500.34 (8) Å30.40 × 0.30 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer1512 reflections with I > σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
graphiteθmax = 27.4°, θmin = 2.1°
[var phi] and ω scansh = −9→11
10640 measured reflectionsk = −25→22
3385 independent reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.0733P)2] where P = (Fo2 + 2Fc2)/3
3385 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = −0.13 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N1−0.1726 (2)0.09197 (8)0.39856 (18)0.0718 (5)
H1C−0.19790.04910.43460.108*
H1D−0.06260.10540.46350.108*
O10.31760 (19)0.22455 (7)0.73435 (18)0.0944 (5)
H1B0.23310.20510.67860.142*
O20.24997 (18)0.03674 (7)0.51894 (15)0.0832 (5)
O30.14101 (19)0.13370 (8)0.56381 (18)0.0948 (5)
C10.6069 (3)0.20988 (10)0.8318 (2)0.0692 (6)
H1A0.61760.25300.87630.083*
C20.4523 (3)0.18561 (9)0.7481 (2)0.0636 (5)
C30.4321 (2)0.12071 (9)0.67629 (19)0.0561 (5)
C40.5718 (3)0.08253 (9)0.69633 (19)0.0604 (5)
H4A0.55970.03980.64980.072*
C50.7325 (3)0.10544 (10)0.7844 (2)0.0629 (5)
C60.8758 (3)0.06627 (12)0.8062 (3)0.0930 (7)
H6A0.86540.02290.76260.112*
C71.0287 (3)0.09073 (16)0.8897 (3)0.1178 (10)
H7A1.12230.06420.90270.141*
C81.0468 (3)0.15586 (15)0.9569 (3)0.1102 (9)
H8A1.15240.17241.01370.132*
C90.9119 (3)0.19463 (12)0.9394 (2)0.0838 (6)
H9A0.92560.23750.98520.101*
C100.7497 (3)0.17107 (10)0.8523 (2)0.0623 (5)
C110.2638 (3)0.09412 (11)0.5796 (2)0.0669 (6)
C12−0.2927 (3)0.14545 (10)0.4042 (2)0.0772 (6)
H12A−0.26190.18950.37490.093*
H12B−0.28930.14950.50610.093*
C13−0.4652 (3)0.12680 (12)0.3005 (3)0.0900 (7)
H13A−0.54120.16340.30040.108*
H13B−0.50010.08530.33660.108*
C14−0.4732 (3)0.11527 (13)0.1424 (3)0.0995 (8)
H14A−0.58370.09960.07980.119*
H14B−0.45250.15830.10150.119*
C15−0.3471 (3)0.06288 (13)0.1397 (2)0.0857 (7)
H15A−0.37590.01840.16900.103*
H15B−0.34900.05890.03830.103*
C16−0.1763 (3)0.08263 (11)0.2440 (3)0.0852 (7)
H16A−0.09790.04710.24390.102*
H16B−0.14340.12510.20970.102*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0655 (12)0.0642 (11)0.0731 (11)−0.0064 (8)0.0116 (9)0.0044 (8)
O10.0755 (11)0.0761 (10)0.1167 (13)0.0101 (8)0.0186 (9)−0.0260 (8)
O20.0942 (12)0.0604 (9)0.0768 (10)−0.0154 (7)0.0110 (8)−0.0074 (7)
O30.0677 (11)0.0869 (11)0.1111 (13)−0.0032 (9)0.0121 (9)−0.0172 (9)
C10.0774 (16)0.0539 (11)0.0683 (13)−0.0059 (11)0.0182 (12)−0.0120 (9)
C20.0689 (15)0.0538 (12)0.0641 (12)0.0031 (11)0.0203 (11)−0.0032 (9)
C30.0682 (14)0.0483 (10)0.0481 (10)−0.0035 (9)0.0176 (9)0.0014 (8)
C40.0753 (15)0.0505 (11)0.0529 (11)−0.0009 (10)0.0211 (10)−0.0031 (8)
C50.0656 (14)0.0660 (13)0.0545 (11)0.0015 (11)0.0192 (10)−0.0012 (9)
C60.0789 (19)0.0897 (16)0.0979 (17)0.0125 (14)0.0187 (14)−0.0205 (13)
C70.071 (2)0.130 (2)0.131 (2)0.0165 (16)0.0138 (17)−0.0327 (19)
C80.0669 (19)0.126 (2)0.119 (2)−0.0029 (16)0.0122 (15)−0.0265 (18)
C90.0794 (17)0.0836 (15)0.0786 (15)−0.0114 (13)0.0181 (13)−0.0138 (12)
C100.0655 (14)0.0637 (13)0.0536 (11)−0.0056 (10)0.0174 (10)−0.0023 (9)
C110.0755 (16)0.0566 (13)0.0604 (12)−0.0084 (12)0.0160 (11)0.0031 (10)
C120.1010 (19)0.0594 (13)0.0748 (14)−0.0006 (12)0.0371 (14)0.0028 (10)
C130.0788 (18)0.0879 (16)0.1040 (19)0.0125 (13)0.0351 (15)0.0085 (14)
C140.0805 (18)0.116 (2)0.0847 (17)0.0087 (15)0.0112 (13)0.0173 (15)
C150.0853 (19)0.1038 (18)0.0645 (13)−0.0124 (14)0.0239 (13)−0.0070 (12)
C160.0800 (18)0.0910 (16)0.0915 (16)−0.0034 (13)0.0401 (14)−0.0088 (13)

Geometric parameters (Å, °)

N1—C121.487 (2)C7—C81.403 (3)
N1—C161.482 (3)C7—H7A0.9300
N1—H1C0.9601C8—C91.348 (3)
N1—H1D0.9600C8—H8A0.9300
O1—C21.357 (2)C9—C101.417 (3)
O1—H1B0.8200C9—H9A0.9300
O2—C111.244 (2)C12—C131.498 (3)
O3—C111.276 (2)C12—H12A0.9700
C1—C21.363 (3)C12—H12B0.9700
C1—C101.400 (3)C13—C141.509 (3)
C1—H1A0.9300C13—H13A0.9700
C2—C31.417 (2)C13—H13B0.9700
C3—C41.372 (3)C14—C151.502 (3)
C3—C111.498 (3)C14—H14A0.9700
C4—C51.404 (3)C14—H14B0.9700
C4—H4A0.9300C15—C161.494 (3)
C5—C61.404 (3)C15—H15A0.9700
C5—C101.416 (2)C15—H15B0.9700
C6—C71.353 (3)C16—H16A0.9700
C6—H6A0.9300C16—H16B0.9700
C12—N1—C16111.63 (16)C1—C10—C9122.6 (2)
C12—N1—H1C109.7C5—C10—C9118.3 (2)
C16—N1—H1C109.4O2—C11—O3123.8 (2)
C12—N1—H1D108.9O2—C11—C3120.0 (2)
C16—N1—H1D109.2O3—C11—C3116.16 (19)
H1C—N1—H1D108.0N1—C12—C13110.18 (17)
C2—O1—H1B109.5N1—C12—H12A109.6
C2—C1—C10121.22 (18)C13—C12—H12A109.6
C2—C1—H1A119.4N1—C12—H12B109.6
C10—C1—H1A119.4C13—C12—H12B109.6
O1—C2—C1118.97 (18)H12A—C12—H12B108.1
O1—C2—C3120.30 (19)C12—C13—C14111.27 (19)
C1—C2—C3120.74 (19)C12—C13—H13A109.4
C4—C3—C2118.14 (18)C14—C13—H13A109.4
C4—C3—C11120.27 (18)C12—C13—H13B109.4
C2—C3—C11121.58 (19)C14—C13—H13B109.4
C3—C4—C5122.53 (18)H13A—C13—H13B108.0
C3—C4—H4A118.7C15—C14—C13110.99 (19)
C5—C4—H4A118.7C15—C14—H14A109.4
C6—C5—C4122.70 (19)C13—C14—H14A109.4
C6—C5—C10119.1 (2)C15—C14—H14B109.4
C4—C5—C10118.21 (18)C13—C14—H14B109.4
C7—C6—C5120.9 (2)H14A—C14—H14B108.0
C7—C6—H6A119.6C16—C15—C14111.0 (2)
C5—C6—H6A119.6C16—C15—H15A109.4
C6—C7—C8120.4 (2)C14—C15—H15A109.4
C6—C7—H7A119.8C16—C15—H15B109.4
C8—C7—H7A119.8C14—C15—H15B109.4
C9—C8—C7120.3 (2)H15A—C15—H15B108.0
C9—C8—H8A119.8N1—C16—C15110.30 (17)
C7—C8—H8A119.8N1—C16—H16A109.6
C8—C9—C10121.0 (2)C15—C16—H16A109.6
C8—C9—H9A119.5N1—C16—H16B109.6
C10—C9—H9A119.5C15—C16—H16B109.6
C1—C10—C5119.13 (19)H16A—C16—H16B108.1

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1B···O30.821.772.504 (2)149
N1—H1C···O2i0.961.832.783 (2)173
N1—H1D···O30.961.752.709 (2)173
C12—H12A···O1ii0.972.403.336 (3)161

Symmetry codes: (i) −x, −y, −z+1; (ii) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2446).

References

  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shen, H., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, o1146–o1147. [PMC free article] [PubMed]
  • Wang, Y.-T., Tang, G.-M. & Qin, D.-W. (2005a). Acta Cryst. E61, o3623–o3624.
  • Wang, Y.-T., Tang, G.-M. & Qin, D.-W. (2005b). Acta Cryst. E61, o3979–o3980.
  • Wang, Y.-T., Tang, G.-M. & Qin, X.-Y. (2006). Acta Cryst. E62, o1496–o1497.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography