PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1196.
Published online 2008 August 23. doi:  10.1107/S1600536808026718
PMCID: PMC2960604

cis-Bis­[2-(diphenyl­phosphino)benzene­thiolato-κ2 P,S]palladium(II)

Abstract

The title compound, [Pd(C18H14PS)2], was synthesized by the reaction of (Ph2PC6H4SH) with [PdCl2(NCC6H5)2] in a 2:1 molar ratio in the presence of a slight excess of NEt3 as base in dichloro­methane. The compound crystallizes with the Pd(II) atom on a twofold rotation axis. The palladium center has a slightly distorted square-planar environment, with the two P—S chelating ligands adopting a cis configuration. The present structure is a pseudo-polymorph of [Pd(C18H14PS)2]·CH2Cl2.

Related literature

For related literature, see: Andreasen et al. (1999 [triangle]); Braunstein & Naud (2001 [triangle]); Real et al. (2000 [triangle]); Canseco-Gonzalez et al. (2003 [triangle], 2004 [triangle]); Dilworth & Weatley (2000 [triangle]); Dilworth et al. (2000 [triangle]); Gómez-Benítez et al. (2003 [triangle], 2007a [triangle],b [triangle]); Morales-Morales et al. (2002a [triangle],b [triangle]); Ortner et al. (2000 [triangle]); Ríos-Moreno et al. (2005 [triangle]); Taguchi et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1196-scheme1.jpg

Experimental

Crystal data

  • [Pd(C18H14PS)2]
  • M r = 693.04
  • Trigonal, An external file that holds a picture, illustration, etc.
Object name is e-64-m1196-efi1.jpg
  • a = 9.306 (1) Å
  • c = 30.069 (8) Å
  • V = 2255.2 (7) Å3
  • Z = 3
  • Mo Kα radiation
  • μ = 0.89 mm−1
  • T = 298 (2) K
  • 0.16 × 0.07 × 0.04 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.877, T max = 0.967
  • 18737 measured reflections
  • 2749 independent reflections
  • 1811 reflections with I > 2σ(I)
  • R int = 0.113

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.084
  • S = 0.82
  • 2749 reflections
  • 186 parameters
  • H-atom parameters constrained
  • Δρmax = 1.40 e Å−3
  • Δρmin = −0.31 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1113 Friedel Pairs
  • Flack parameter: −0.05 (6)

Data collection: SMART (Bruker, 1999 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808026718/bt2741sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026718/bt2741Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The support of this research by CONACYT (F58692) and DGAPA-UNAM (IN227008) is gratefully acknowledged.

supplementary crystallographic information

Comment

In recent years, attention has increasingly been paid to the coordination chemistry of polydentate ligands incorporating both thiolate and tertiary phosphine donor ligands, as their combination is likely to confer unusual structures and reactivities on their metal complexes (Dilworth, et al., 2000; Morales-Morales et al., 2002a; Gómez-Benítez et al., 2003). These complexes have shown an intriguing variety of structures (Andreasen et al. 1999; Taguchi et al., 1999) or unusual oxidation states and enhanced solubility (Ortner et al., 2000), making these species excellent candidates for further studies in reactivity. Moreover, the presence of these ligands in the coordination sphere of transition metal complexes may render interesting behaviours in solution as these ligands can be capable of full or partial de-ligation (hemilability) (Dilworth & Weatley, 2000; Braunstein & Naud, 2001) being able to provide important extra coordination sites for incoming substrates during a catalytic process (Dilworth & Weatley, 2000, Braunstein & Naud, 2001). Thus, given our continuous interest in the synthesis of transition metal complexes bearing P—S hybrid ligands (Morales-Morales et al., 2002a, 2002b; Gómez-Benítez et al., 2007a, 2007b; Ríos-Moreno et al., 2005; Canseco-Gonzalez et al., 2003, 2004) we report the crystal structure of a pseudo-polymorph of the Pd(II) complex cis- [Pd(Ph2PC6H4-2-S)2] (Real et al., 2000; Canseco-Gonzalez et al., 2003)

The asymmetric unit cointains only half of molecule, with the Pd atom in special position of site symmetry 2. The structure of the title compound is shown with the numbering scheme in Fig. 1. The geometric parameters do not differ significantly from the values reported in the previously described polymorphs. The complex exhibits the Pd center into a slightly distorted square planar environment with the two P—S chelating ligands adopting a cis conformation.

Experimental

Synthesis of cis-[Pd(Ph2PC6H4–2-S)2] (I). To a solution of (Ph2PC6H4–2-SH) (34 mg, 0.12 mmol) in CH2Cl2 (20 ml), NEt3 (13 mg, 0.13 mmol) and a CH2Cl2 solution (30 ml) of [Pd(Cl)2(NCC6H5)2] (22 mg, 0.058 mmol) were added under stirring. The resulting mixture was allowed to stir overnight. After this time, formation of a pale yellow precipitated was noticed, the product was filtered off under vacuum and washed twice with methanol. Recrystallization from a double layer solvent system CH2Cl2/MeOH afforded complex I as a microcrystalline yellow powder. Yield 87.5%. 1H-NMR (300 MHz, CDCl3), (7.71–6.79 (m, Ph, 28H); 31P-NMR (121 MHz, CDCl3), (-42.42 (s). Elem. Anal. Calculated for [C36H28P2S2Pd] Calc. %: C: 64.20, H: 4.00. Found %: C: 64.00, H: 4.20. MS-FAB+ [M+] = 692 m/z.

Refinement

H atoms were included in calculated positions (C—H = 0.93 Å), and refined using a riding model,with Uiso(H) = 1.2Ueq of the carrier atom. Geometrical restraints were applied in phenyl rings on P atom.

Figures

Fig. 1.
Molecular structure of the title compound with the atoms numbering scheme. Displacement ellipsoids are shown at the 40% probability level. All H atoms have been omitted for clarity. The symmetry operator for generating equivalent atoms symmetry operator; ...

Crystal data

[Pd(C18H14PS)2]Z = 3
Mr = 693.04F000 = 1056
Trigonal, P3221Dx = 1.531 Mg m3
Hall symbol: P 32 2"Mo Kα radiation λ = 0.71073 Å
a = 9.306 (1) ÅCell parameters from 2935 reflections
b = 9.306 (1) Åθ = 2.5–19.9º
c = 30.069 (8) ŵ = 0.89 mm1
α = 90ºT = 298 (2) K
β = 90ºPrism, yellow
γ = 120º0.16 × 0.07 × 0.04 mm
V = 2255.2 (7) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer2749 independent reflections
Radiation source: fine-focus sealed tube1811 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.113
Detector resolution: 0.83 pixels mm-1θmax = 25.3º
T = 298(2) Kθmin = 2.0º
ω scansh = −11→11
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)k = −11→11
Tmin = 0.877, Tmax = 0.967l = −36→36
18737 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046  w = 1/[σ2(Fo2) + (0.025P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max = 0.001
S = 0.82Δρmax = 1.40 e Å3
2749 reflectionsΔρmin = −0.31 e Å3
186 parametersExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1113 Friedel Pairs
Secondary atom site location: difference Fourier mapFlack parameter: −0.05 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pd0.48559 (7)0.48559 (7)0.00000.0377 (2)
P10.2993 (2)0.3605 (2)0.05647 (6)0.0399 (5)
S10.6481 (2)0.6901 (2)0.05082 (7)0.0592 (6)
C10.5327 (8)0.6409 (8)0.0997 (2)0.0408 (18)
C20.3770 (9)0.4982 (8)0.1037 (2)0.0397 (18)
C30.2892 (10)0.4667 (9)0.1433 (2)0.060 (2)
H30.18540.37190.14580.072*
C40.3528 (12)0.5730 (12)0.1790 (2)0.072 (3)
H40.29180.55090.20510.086*
C50.5077 (12)0.7126 (11)0.1757 (3)0.069 (3)
H50.55260.78370.19990.083*
C60.5958 (10)0.7467 (9)0.1367 (2)0.059 (2)
H60.69950.84190.13470.070*
C70.2670 (9)0.1641 (8)0.0782 (2)0.0457 (19)
C80.1239 (11)0.0432 (10)0.0973 (3)0.076 (3)
H80.03170.05700.09870.091*
C90.1143 (15)−0.0996 (12)0.1145 (3)0.095 (3)
H90.0142−0.18080.12650.114*
C100.2415 (15)−0.1239 (12)0.1144 (3)0.083 (3)
H100.2336−0.21820.12750.100*
C110.3848 (12)−0.0089 (12)0.0949 (3)0.085 (3)
H110.4754−0.02540.09390.102*
C120.3967 (11)0.1320 (11)0.0765 (2)0.064 (2)
H120.49490.20790.06250.077*
C130.0948 (8)0.3330 (8)0.0457 (2)0.0414 (19)
C140.0640 (11)0.4611 (12)0.0535 (2)0.064 (2)
H140.14500.55700.06730.076*
C15−0.0844 (10)0.4507 (12)0.0413 (3)0.065 (3)
H15−0.10310.53860.04650.078*
C16−0.2044 (12)0.3062 (16)0.0212 (3)0.094 (4)
H16−0.30330.29800.01180.113*
C17−0.1781 (11)0.1752 (13)0.0151 (3)0.105 (3)
H17−0.26090.07660.00290.125*
C18−0.0297 (10)0.1907 (11)0.0272 (3)0.080 (3)
H18−0.01270.10140.02280.096*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pd0.0332 (3)0.0332 (3)0.0451 (4)0.0155 (4)−0.0016 (2)0.0016 (2)
P10.0406 (11)0.0357 (12)0.0438 (12)0.0193 (9)−0.0009 (9)0.0022 (9)
S10.0476 (13)0.0509 (13)0.0634 (14)0.0129 (10)−0.0031 (10)−0.0121 (11)
C10.051 (5)0.038 (4)0.042 (4)0.029 (4)−0.011 (4)−0.002 (3)
C20.050 (5)0.041 (4)0.037 (4)0.029 (4)−0.002 (4)0.000 (3)
C30.094 (7)0.061 (5)0.034 (5)0.046 (5)−0.007 (5)−0.002 (4)
C40.105 (8)0.091 (7)0.038 (5)0.064 (7)0.003 (5)0.005 (5)
C50.105 (8)0.067 (6)0.048 (6)0.053 (6)−0.025 (5)−0.019 (5)
C60.057 (6)0.057 (5)0.062 (5)0.029 (5)−0.010 (5)−0.018 (4)
C70.050 (5)0.035 (5)0.042 (4)0.014 (4)0.003 (3)0.002 (3)
C80.073 (6)0.046 (6)0.111 (7)0.033 (5)0.040 (5)0.031 (5)
C90.119 (10)0.055 (7)0.103 (8)0.038 (7)0.040 (8)0.039 (6)
C100.138 (9)0.044 (6)0.069 (6)0.046 (7)−0.023 (6)0.000 (5)
C110.096 (8)0.079 (8)0.100 (8)0.059 (7)−0.039 (6)−0.006 (6)
C120.046 (6)0.064 (6)0.082 (6)0.027 (4)−0.004 (5)0.011 (5)
C130.040 (4)0.039 (5)0.040 (4)0.016 (4)0.010 (3)0.003 (3)
C140.063 (6)0.071 (7)0.060 (5)0.036 (5)0.014 (5)0.023 (5)
C150.056 (5)0.096 (8)0.065 (6)0.055 (6)0.005 (4)0.012 (5)
C160.068 (7)0.185 (13)0.059 (6)0.085 (9)0.018 (5)0.027 (7)
C170.053 (6)0.153 (10)0.119 (7)0.060 (7)−0.031 (6)−0.039 (7)
C180.059 (6)0.095 (8)0.095 (7)0.045 (6)−0.012 (5)−0.021 (6)

Geometric parameters (Å, °)

Pd—P1i2.2861 (18)C8—C91.386 (10)
Pd—P12.2861 (18)C8—H80.9300
Pd—S12.316 (2)C9—C101.312 (10)
Pd—S1i2.316 (2)C9—H90.9300
P1—C21.805 (7)C10—C111.358 (11)
P1—C71.818 (7)C10—H100.9300
P1—C131.818 (7)C11—C121.375 (10)
S1—C11.740 (7)C11—H110.9300
C1—C21.398 (8)C12—H120.9300
C1—C61.405 (8)C13—C181.367 (9)
C2—C31.390 (9)C13—C141.379 (9)
C3—C41.376 (9)C14—C151.384 (9)
C3—H30.9300C14—H140.9300
C4—C51.379 (11)C15—C161.386 (11)
C4—H40.9300C15—H150.9300
C5—C61.374 (9)C16—C171.369 (12)
C5—H50.9300C16—H160.9300
C6—H60.9300C17—C181.364 (10)
C7—C81.368 (9)C17—H170.9300
C7—C121.382 (8)C18—H180.9300
P1i—Pd—P1101.33 (9)C7—C8—C9121.0 (9)
P1i—Pd—S1171.41 (7)C7—C8—H8119.5
P1—Pd—S186.90 (7)C9—C8—H8119.5
P1i—Pd—S1i86.90 (7)C10—C9—C8122.2 (11)
P1—Pd—S1i171.41 (7)C10—C9—H9118.9
S1—Pd—S1i85.00 (11)C8—C9—H9118.9
C2—P1—C7103.7 (3)C9—C10—C11118.7 (11)
C2—P1—C13105.1 (3)C9—C10—H10120.6
C7—P1—C13106.7 (3)C11—C10—H10120.6
C2—P1—Pd106.9 (2)C10—C11—C12120.3 (10)
C7—P1—Pd118.7 (2)C10—C11—H11119.9
C13—P1—Pd114.4 (2)C12—C11—H11119.9
C1—S1—Pd106.1 (2)C11—C12—C7122.0 (9)
C2—C1—C6117.9 (7)C11—C12—H12119.0
C2—C1—S1122.3 (5)C7—C12—H12119.0
C6—C1—S1119.8 (6)C18—C13—C14117.7 (7)
C3—C2—C1119.7 (6)C18—C13—P1122.0 (6)
C3—C2—P1122.7 (6)C14—C13—P1120.2 (6)
C1—C2—P1117.6 (6)C13—C14—C15121.8 (10)
C4—C3—C2121.3 (8)C13—C14—H14119.1
C4—C3—H3119.3C15—C14—H14119.1
C2—C3—H3119.3C14—C15—C16118.3 (10)
C3—C4—C5119.5 (8)C14—C15—H15120.8
C3—C4—H4120.2C16—C15—H15120.8
C5—C4—H4120.2C17—C16—C15120.4 (9)
C6—C5—C4120.0 (7)C17—C16—H16119.8
C6—C5—H5120.0C15—C16—H16119.8
C4—C5—H5120.0C18—C17—C16119.5 (10)
C5—C6—C1121.5 (7)C18—C17—H17120.3
C5—C6—H6119.2C16—C17—H17120.3
C1—C6—H6119.2C17—C18—C13122.2 (8)
C8—C7—C12115.7 (8)C17—C18—H18118.9
C8—C7—P1125.5 (6)C13—C18—H18118.9
C12—C7—P1118.8 (6)
P1i—Pd—P1—C2−177.7 (2)S1—C1—C6—C5179.5 (6)
S1—Pd—P1—C24.8 (2)C2—P1—C7—C889.7 (7)
S1i—Pd—P1—C2−14.7 (6)C13—P1—C7—C8−21.0 (8)
P1i—Pd—P1—C765.6 (2)Pd—P1—C7—C8−152.0 (6)
S1—Pd—P1—C7−111.9 (3)C2—P1—C7—C12−89.0 (7)
S1i—Pd—P1—C7−131.4 (5)C13—P1—C7—C12160.3 (6)
P1i—Pd—P1—C13−61.9 (2)Pd—P1—C7—C1229.3 (7)
S1—Pd—P1—C13120.6 (3)C12—C7—C8—C91.4 (12)
S1i—Pd—P1—C13101.1 (5)P1—C7—C8—C9−177.3 (7)
P1i—Pd—S1—C1−167.4 (5)C7—C8—C9—C101.8 (16)
P1—Pd—S1—C1−4.1 (2)C8—C9—C10—C11−3.2 (18)
S1i—Pd—S1—C1173.0 (2)C9—C10—C11—C121.5 (16)
Pd—S1—C1—C22.5 (6)C10—C11—C12—C71.8 (14)
Pd—S1—C1—C6−177.4 (5)C8—C7—C12—C11−3.1 (12)
C6—C1—C2—C31.0 (10)P1—C7—C12—C11175.7 (6)
S1—C1—C2—C3−178.9 (5)C2—P1—C13—C18−150.7 (6)
C6—C1—C2—P1−178.5 (5)C7—P1—C13—C18−40.9 (7)
S1—C1—C2—P11.6 (8)Pd—P1—C13—C1892.5 (6)
C7—P1—C2—C3−58.1 (6)C2—P1—C13—C1433.4 (6)
C13—P1—C2—C353.8 (6)C7—P1—C13—C14143.1 (5)
Pd—P1—C2—C3175.7 (5)Pd—P1—C13—C14−83.5 (6)
C7—P1—C2—C1121.4 (6)C18—C13—C14—C15−3.0 (11)
C13—P1—C2—C1−126.8 (5)P1—C13—C14—C15173.1 (6)
Pd—P1—C2—C1−4.9 (6)C13—C14—C15—C160.7 (12)
C1—C2—C3—C4−0.3 (11)C14—C15—C16—C172.4 (14)
P1—C2—C3—C4179.1 (6)C15—C16—C17—C18−3.0 (14)
C2—C3—C4—C5−0.9 (11)C16—C17—C18—C130.5 (14)
C3—C4—C5—C61.5 (12)C14—C13—C18—C172.4 (12)
C4—C5—C6—C1−0.8 (11)P1—C13—C18—C17−173.6 (6)
C2—C1—C6—C5−0.4 (10)

Symmetry codes: (i) y, x, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2741).

References

  • Andreasen, L. V., Simonsen, O. & Wernberg, O. (1999). Inorg. Chim. Acta, 295, 153–163.
  • Braunstein, P. & Naud, F. (2001). Angew. Chem. Int. Ed.40, 680–699. [PubMed]
  • Bruker (1999). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Canseco-Gonzalez, D., Gómez-Benítez, D., Baldovino-Pantaleon, O., Hernandez-Ortega, S. & Morales-Morales, D. (2004). J. Organomet. Chem.689, 174–180.
  • Canseco-Gonzalez, D., Gómez-Benítez, D., Hernandez-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2003). J. Organomet. Chem.679, 101–109.
  • Dilworth, J. R., Morales, D. & Zheng, Y. (2000). J. Chem. Soc. Dalton Trans. pp. 3007–3015.
  • Dilworth, J. R. & Weatley, N. (2000). Coord. Chem. Rev.199, 89–158.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gómez-Benítez, V., Hernández-Ortega, S. & Morales-Morales, D. (2003). Inorg. Chim. Acta, 346, 256–260.
  • Gómez-Benítez, V., Hernánez-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2007b). Inorg. Chim. Acta, 360, 2128–2138.
  • Gómez-Benítez, V., Toscano, R. A. & Morales-Morales, D. (2007a). Inorg. Chem. Commun.10, 1–6.
  • Morales-Morales, D., Redón, R., Zheng, Y. & Dilworth, J. R. (2002b). Inorg. Chim. Acta, 328, 39–44.
  • Morales-Morales, D. S., Rodríguez-Morales, S., Dilworth, J. R., Sousa-Pedrares, A. & Zheng, Y. (2002a). Inorg. Chim. Acta, 332, 101–107.
  • Ortner, K., Hilditch, L., Zheng, Z., Dilworth, J. R. & Abram, U. (2000). Inorg. Chem.39, 2801–2806. [PubMed]
  • Real, J., Prat, E., Polo, A., Alvarez-Larena, A. & Piniella, J. F. (2000). Inorg. Chem. Commun.3, 221–223.
  • Ríos-Moreno, G., Toscano, R. A., Redón, R., Nakano, H., Okuyama, Y. & Morales-Morales, D. (2005). Inorg. Chim. Acta, 358, 303–309.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Taguchi, N., Kashiwabara, K., Nakajima, K., Kawaguchi, H. & Tatsumi, K. (1999). J. Organomet. Chem.587, 290–298.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography