PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1745.
Published online 2008 August 13. doi:  10.1107/S1600536808025063
PMCID: PMC2960602

5,5-Bis(hydroxy­meth­yl)-3-methyl­cyclo­hex-2-enone

Abstract

In the title compound, C9H14O3, the cyclo­hexenone ring has an envelope conformation; the flap atom (with the hydroxy­methyl groups attached) is displaced by 0.582 (4) Å from the plane of the other five ring atoms. The crystal structure contains an inter­molecular O—H(...)O hydrogen-bonded ring.

Related literature

For related literature, see: Aghil et al. (1992 [triangle]); Hu et al. (2003 [triangle]); Li & Strobel (2001 [triangle]); Luu et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1745-scheme1.jpg

Experimental

Crystal data

  • C9H14O3
  • M r = 170.21
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1745-efi1.jpg
  • a = 5.9791 (3) Å
  • b = 6.2251 (1) Å
  • c = 13.7493 (8) Å
  • α = 90.8104 (17)°
  • β = 91.3285 (12)°
  • γ = 117.0728 (15)°
  • V = 455.38 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 (1) K
  • 0.43 × 0.40 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.958, T max = 0.982
  • 4514 measured reflections
  • 2060 independent reflections
  • 1432 reflections with F 2 > 2σ(F 2)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.195
  • S = 1.01
  • 2060 reflections
  • 110 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]) and Larson (1970 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: CrystalStructure.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808025063/ez2128sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025063/ez2128Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was partially supported by the Natural Science Foundation of China (20572094, 20672099). Mr Xinju Ma of the College of Pharmaceutical Science of Zhejiang University of Technology is acknowledged for assistance with the crystal structure analysis.

supplementary crystallographic information

Comment

Functionalized cyclohex-2-enone derivatives can be used as precursors in the syntheses of some complex compounds, such as vitamin E, amino acids, terpenes etc. (Hu et al., 2003). In addition, cyclohex-2-enone derivatives have been shown to have a wide range of biological activities such as antimicrobial (Li et al., 2001) and anticancer (Aghil et al., 1992) activities, and are involved in the protection of cerebral neurocytes (Luu et al., 2004). We are interested in their further pharmaceutical activity.

In this paper, we present an X-ray crystallographic analysis of the title compound (I) (Fig. 1). The cyclohexenone ring has an envelope conformation, such that the plane which is composed of atoms C1, C2 and C6 (forming the flap) and the C2, C3, C4, C5, C6 plane form a dihedral angle of 41.80 (4)°. Two molecules are linked together through O—H···O interactions. Since each molecule contains a hydrogen-bond donor group (–OH) at one end and an acceptor (–OH) at the other, a ring of four H-bonds is formed between these two molecules and a neighboring pair in the crystal lattice (Fig. 2).

Experimental

A solution of 4,4-bis(hydroxymethyl)-2,6-heptanedione(188 mg, 1 mmol) and sodium methoxide (54 mg, 1 mmol) in methanol (10 ml) was heated at 323 K for 4 h. The reaction mixture was acidified with dilute aqueous HCl, then concentrated and partitioned between water and dichloromethane. The pure product was obtained through silica gel chromatography (eluant petroleum ether/ethyl acetate, 1:1), and diffraction quality crystals were obtained by slow evaporation of a dichloromethane / petroleum ether (1:3) solution at room temperature.

Refinement

All H atoms were placed in calculated positions, with C—H distances in the range 0.93–0.98Å and included in the final cycles of refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The unit of (I) with atom labels, showing 50% probability displacement ellipsoids.
Fig. 2.
A partial packing diagram viewed along the b axis. Hydrogen bonds are drawn as dashed lines.

Crystal data

C9H14O3Z = 2
Mr = 170.21F000 = 184.00
Triclinic, P1Dx = 1.241 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71075 Å
a = 5.9791 (3) ÅCell parameters from 3491 reflections
b = 6.22510 (10) Åθ = 3.7–27.4º
c = 13.7493 (8) ŵ = 0.09 mm1
α = 90.8104 (17)ºT = 296 (1) K
β = 91.3285 (12)ºChunk, colorless
γ = 117.0728 (15)º0.43 × 0.40 × 0.20 mm
V = 455.38 (4) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer1432 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.018
ω scansθmax = 27.5º
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)h = −7→7
Tmin = 0.958, Tmax = 0.982k = −8→8
4514 measured reflectionsl = −17→17
2060 independent reflections

Refinement

Refinement on F2  w = 1/[0.0027Fo2 + 5σ(Fo2) + 1]/(4Fo2)
R[F2 > 2σ(F2)] = 0.054(Δ/σ)max < 0.001
wR(F2) = 0.195Δρmax = 0.29 e Å3
S = 1.01Δρmin = −0.23 e Å3
2060 reflectionsExtinction correction: Larson (1970)
110 parametersExtinction coefficient: 107 (30)
H-atom parameters constrained

Special details

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.1756 (3)1.1069 (3)0.16817 (14)0.0617 (6)
O20.8610 (2)0.5583 (3)0.38179 (12)0.0518 (5)
O30.3183 (3)0.5928 (4)0.43726 (12)0.0625 (6)
C10.6300 (3)0.7646 (4)0.31049 (14)0.0342 (5)
C20.4284 (4)0.7285 (4)0.23242 (14)0.0382 (6)
C30.5141 (4)0.7644 (4)0.13114 (16)0.0395 (6)
C40.7599 (4)0.8911 (4)0.11129 (17)0.0459 (6)
C50.9546 (4)1.0036 (4)0.18614 (18)0.0418 (6)
C60.8686 (4)0.9901 (4)0.29092 (17)0.0435 (6)
C70.3125 (5)0.6558 (5)0.05324 (18)0.0575 (8)
C80.6772 (4)0.5422 (4)0.31014 (16)0.0391 (6)
C90.5370 (4)0.7935 (5)0.41112 (17)0.0497 (7)
H40.80570.90660.04660.055*
H210.29490.56490.23650.046*
H220.36280.84180.24670.046*
H611.00130.99530.33430.052*
H620.84041.12910.30440.052*
H710.38750.6827−0.00930.069*
H720.20240.72940.05640.069*
H730.21830.48550.06260.069*
H810.52040.40120.32250.047*
H820.73440.52430.24650.047*
H910.66840.82090.45960.060*
H920.50420.93240.41030.060*
H2010.77360.48670.43570.067*
H3010.18880.61490.40490.081*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0437 (10)0.0582 (12)0.0750 (14)0.0149 (8)0.0195 (9)0.0154 (10)
O20.0403 (9)0.0843 (13)0.0433 (9)0.0383 (9)0.0072 (7)0.0232 (8)
O30.0444 (9)0.1166 (18)0.0398 (9)0.0471 (11)0.0123 (7)0.0284 (10)
C10.0325 (10)0.0441 (13)0.0296 (10)0.0205 (9)0.0006 (8)−0.0006 (8)
C20.0357 (10)0.0514 (14)0.0324 (11)0.0239 (10)0.0002 (8)0.0044 (9)
C30.0480 (12)0.0438 (13)0.0328 (11)0.0263 (11)−0.0014 (9)0.0041 (9)
C40.0556 (14)0.0524 (15)0.0333 (11)0.0272 (12)0.0097 (10)0.0090 (10)
C50.0422 (12)0.0347 (12)0.0508 (13)0.0190 (10)0.0108 (10)0.0086 (10)
C60.0423 (12)0.0411 (13)0.0437 (13)0.0163 (10)−0.0014 (10)−0.0049 (10)
C70.0663 (17)0.0717 (19)0.0387 (13)0.0360 (15)−0.0145 (12)−0.0003 (12)
C80.0371 (11)0.0488 (14)0.0366 (11)0.0238 (10)−0.0010 (9)0.0071 (9)
C90.0473 (13)0.0781 (19)0.0333 (12)0.0367 (13)0.0062 (10)0.0024 (12)

Geometric parameters (Å, °)

O1—C51.211 (2)O3—H3010.948
O2—C81.426 (3)C2—H210.970
O3—C91.395 (2)C2—H220.970
C1—C21.530 (3)C4—H40.930
C1—C61.512 (2)C6—H610.970
C1—C81.534 (4)C6—H620.970
C1—C91.541 (3)C7—H710.960
C2—C31.480 (3)C7—H720.960
C3—C41.351 (3)C7—H730.960
C3—C71.495 (3)C8—H810.970
C4—C51.445 (3)C8—H820.970
C5—C61.531 (3)C9—H910.970
O2—H2010.915C9—H920.970
C2—C1—C6109.76 (18)C3—C4—H4118.6
C2—C1—C8109.12 (18)C5—C4—H4118.6
C2—C1—C9109.4 (2)C1—C6—H61108.4
C6—C1—C8110.8 (2)C1—C6—H62108.4
C6—C1—C9108.79 (18)C5—C6—H61108.4
C8—C1—C9109.0 (2)C5—C6—H62108.4
C1—C2—C3115.5 (2)H61—C6—H62109.5
C2—C3—C4121.45 (19)C3—C7—H71109.5
C2—C3—C7115.92 (19)C3—C7—H72109.5
C4—C3—C7122.6 (2)C3—C7—H73109.5
C3—C4—C5122.9 (2)H71—C7—H72109.5
O1—C5—C4122.5 (2)H71—C7—H73109.5
O1—C5—C6120.8 (2)H72—C7—H73109.5
C4—C5—C6116.7 (2)O2—C8—H81108.6
C1—C6—C5113.84 (17)O2—C8—H82108.6
O2—C8—C1113.12 (18)C1—C8—H81108.6
O3—C9—C1113.6 (2)C1—C8—H82108.6
C8—O2—H201105.8H81—C8—H82109.5
C9—O3—H301103.4O3—C9—H91108.4
C1—C2—H21107.9O3—C9—H92108.4
C1—C2—H22107.9C1—C9—H91108.4
C3—C2—H21107.9C1—C9—H92108.4
C3—C2—H22107.9H91—C9—H92109.5
H21—C2—H22109.5
C2—C1—C6—C5−50.0 (3)C8—C1—C9—O3−58.2 (2)
C6—C1—C2—C344.7 (3)C9—C1—C8—O2−59.9 (2)
C2—C1—C8—O2−179.24 (16)C1—C2—C3—C4−19.9 (4)
C8—C1—C2—C3−76.9 (2)C1—C2—C3—C7161.0 (2)
C2—C1—C9—O361.0 (3)C2—C3—C4—C5−1.2 (4)
C9—C1—C2—C3164.0 (2)C7—C3—C4—C5177.8 (3)
C6—C1—C8—O259.8 (2)C3—C4—C5—O1176.3 (3)
C8—C1—C6—C570.6 (2)C3—C4—C5—C6−4.6 (4)
C6—C1—C9—O3−179.1 (2)O1—C5—C6—C1−149.4 (2)
C9—C1—C6—C5−169.7 (2)C4—C5—C6—C131.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H201···O3i0.921.852.738 (2)163
O3—H301···O2ii0.951.852.733 (2)155

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2128).

References

  • Aghil, O., Bibby, M. C., Carrington, S. J., Douglas, K. T., Phillips, R. M. & Shing, T. K. M. (1992). Anti-Cancer Drug Des.7, 67–82. [PubMed]
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Hu, B. C., Lv, C. X. & Liu, Z. L. (2003). Yingyong Huaxue, 20, 1012–1014.
  • Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 291–294. Copenhagen: Munksgaard.
  • Li, J. Y. & Strobel, G. A. (2001). Phytochemistry, 57, 261–265. [PubMed]
  • Luu, B., Kudo, Y., Yamada, M., Uchida, M., Suma, Y. & Suzuki, H. (2004). US Patent No. 0 152 786.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography