PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1135–m1136.
Published online 2008 August 6. doi:  10.1107/S1600536808023969
PMCID: PMC2960600

[μ-2,8-Dimethyl-1,4,5,6,7,10,11,12-octa­hydro­diimidazo[4,5-h;4′,5′-c][1,6]diaze­cine-5,11-diacetato]bis­[diaqua­nitrato­copper(II)] trihydrate

Abstract

The title compound, [Cu2(C16H20N6O4)(NO3)2(H2O)4]·3H2O, crystallizes with two dinuclear CuII complex mol­ecules, each lying on an inversion center, and six solvent water mol­ecules per unit cell. The central 1,6-diazecine ring adopts the common chair conformation invariably found in the family of complexes bearing such ligands. The CuII atoms have an octa­hedral geometry, with a very strong tetra­gonal distortion due to the Jahn–Teller effect. Axial sites are occupied by a nitrate ion and a water mol­ecule. The Cu(...)Cu separations [7.3580 (9) and 7.3341 (9) Å] are compatible with a potential catecholase activity. Neighboring mol­ecules in the crystal structure are connected via O—H(...)O hydrogen bonds formed by water mol­ecules and carboxyl­ate O atoms. N—H(...)O hydrogen bonds are also present.

Related literature

For the X-ray characterized dinuclear CuII complexes based on related bis­(amino­imidazole) ligands, which were designed as models of the catechol oxidaze active site, see: Driessen et al. (2005 [triangle]); Gasque et al. (2005 [triangle], 2008 [triangle]); Mendoza-Díaz et al. (2002 [triangle]); Sosa et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1135-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C16H20N6O4)(NO3)2(H2O)4]·3H2O
  • M r = 737.59
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1135-efi1.jpg
  • a = 7.7983 (9) Å
  • b = 8.7523 (11) Å
  • c = 22.509 (2) Å
  • α = 91.802 (10)°
  • β = 93.479 (9)°
  • γ = 114.023 (11)°
  • V = 1398.0 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.61 mm−1
  • T = 296 (1) K
  • 0.24 × 0.20 × 0.18 mm

Data collection

  • Bruker P4 diffractometer
  • Absorption correction: ψ scan (XSCANS; Siemens, 1996 [triangle]) T min = 0.638, T max = 0.750
  • 12145 measured reflections
  • 6396 independent reflections
  • 5139 reflections with I > 2σ(I)
  • R int = 0.028
  • 3 standard reflections every 97 reflections intensity decay: 2.5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.082
  • S = 1.02
  • 6396 reflections
  • 433 parameters
  • 22 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: XSCANS (Siemens, 1996 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808023969/hy2146sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023969/hy2146Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SB thanks Universidad de Puebla, Mexico, for diffractometer time.

supplementary crystallographic information

Comment

Several dinucleating ligands containing imidazole and amines condensed via the Mannich reaction have been recently described, as well as their dicopper complexes (Driessen et al., 2005; Gasque et al., 2005; Mendoza-Díaz et al., 2002; Sosa et al., 2005), which exhibit interesting magnetic properties and a significant catecholase activity (Gasque et al., 2008). The complex presented here is an analogue of the first dicopper complex of this family reported (Mendoza-Díaz et al., 2002), in which perchlorate ion has been substituted by nitrate. As nitrate ions have a stronger ability to coordinate metal ions, the present complex is found to have six-coordinated CuII centers, while perchlorate ions afforded a cationic complex including five-coordinated metal centers.

The asymmetric unit of the title compound is formed by two half-complexes, placed close to inversion centers, and three lattice water molecules, lying on general positions. The triclinic unit cell thus contains two dinuclar centrosymmetric complexes (Figs. 1 and 2), which have similar structures. The bis(aminoimidazole) ligand coordinates two CuII atoms, via imidazole and tertiary N atoms, and one carboxylate O atom. Each CuII atom completes its coordination environment with two water molecules and one monodentate nitrate ion. The resulting coordination geometry is octahedral, with a very strong distortion due to the Jahn-Teller effect: Cu—O axial bond lengths are in the range of 2.4221 (19)–2.607 (2) Å, while the longest equatorial bond measures 2.0690 (17) Å (Table 1). The central 1,6-diazecine 10-membered ring displays a chair conformation, with a total puckering amplitude of 1.441 (2) and 1.434 (2) Å for Cu1- and Cu2-complex, respectively. The Cu···Cu separations, 7.3580 (9) and 7.3341 (9) Å, are probably compatible with a catecholase activity for this molecular compound (Gasque et al., 2008).

Lattice water molecules are active into forming a number of rather strong hydrogen bonds (Table 2), connecting neighboring molecules in the crystal. Strongest hydrogen bonds involve all water molecules, as both donor and acceptor, and carboxylate O atoms as acceptor groups (Fig. 3).

Experimental

The diazecine derivative was prepared as described previously (Mendoza-Díaz et al., 2002). To prepare the title compound, Cu(NO3)2.2.5H2O (0.232 g, 1 mmol) were dissolved in 20 ml of water, and an aqueous solution containing the ligand (0.251 g, 0.5 mmol) was added dropwise with stirring. The final pH was 2, at which the solution was left to stand. Blue crystals were collected after two days. Analysis, calculated for C16H34Cu2N8O17: C 26.05, H 4.61, N 15.20%; found: C 26.67, H 4.55, N 15.55%.

Refinement

Water H atoms were located in a difference Fourier map and refined with distance restraints of O—H = 0.85 (1) and H···H = 1.34 (1) Å, and with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and refined as riding atoms, with N—H = 0.86 and C—H = 0.96 (CH3) and 0.97 Å (CH2), and with Uiso(H) = 1.2Ueq(C,N) or Uiso(H) = 1.5Ueq(methyl C).

Figures

Fig. 1.
Structure of the first independent molecule. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) -x, 2-y, 1-z.]
Fig. 2.
Structure of the second independent molecule. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (ii) 1-x, 2-y, -z.]
Fig. 3.
A part of the crystal packing, viewed down the [100] direction. C- and N–bonded H atoms have been omitted for clarity. Dashed lines represent hydrogen bonds involving water molecules and carboxylate O atoms.

Crystal data

[Cu2(C16H20N6O4)(NO3)2(H2O)4]·3H2OZ = 2
Mr = 737.59F000 = 760
Triclinic, P1Dx = 1.752 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.7983 (9) ÅCell parameters from 74 reflections
b = 8.7523 (11) Åθ = 3.8–12.5º
c = 22.509 (2) ŵ = 1.61 mm1
α = 91.802 (10)ºT = 296 (1) K
β = 93.479 (9)ºPrism, blue
γ = 114.023 (11)º0.24 × 0.20 × 0.18 mm
V = 1398.0 (3) Å3

Data collection

Bruker P4 diffractometerRint = 0.028
Radiation source: fine-focus sealed tubeθmax = 27.5º
Monochromator: graphiteθmin = 2.6º
T = 296(1) Kh = −9→7
2θ/ω scansk = −10→11
Absorption correction: ψ scan(XSCANS; Siemens, 1996)l = −29→29
Tmin = 0.638, Tmax = 0.7503 standard reflections
12145 measured reflections every 97 reflections
6396 independent reflections intensity decay: 2.5%
5139 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082  w = 1/[σ2(Fo2) + (0.0357P)2 + 0.6951P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
6396 reflectionsΔρmax = 0.50 e Å3
433 parametersΔρmin = −0.48 e Å3
22 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.08644 (4)0.89792 (3)0.348009 (11)0.02579 (9)
N1−0.0982 (3)0.7671 (2)0.40361 (8)0.0248 (4)
C2−0.1523 (3)0.6214 (3)0.42879 (10)0.0256 (4)
N3−0.2240 (3)0.6329 (2)0.48134 (8)0.0258 (4)
H3A−0.26800.55350.50520.031*
C4−0.2147 (3)0.7941 (3)0.49036 (9)0.0238 (4)
C5−0.1392 (3)0.8745 (3)0.44130 (9)0.0231 (4)
C6−0.0845 (3)1.0489 (3)0.42218 (9)0.0234 (4)
H6A−0.08501.12280.45510.028*
H6B−0.17101.05130.38980.028*
N70.1104 (3)1.1013 (2)0.40212 (8)0.0236 (4)
C80.1656 (3)1.2389 (3)0.36114 (10)0.0275 (5)
H8A0.22461.34600.38380.033*
H8B0.05501.23580.33800.033*
C90.3037 (3)1.2185 (3)0.31942 (10)0.0294 (5)
O100.2858 (2)1.06789 (19)0.30833 (7)0.0303 (3)
O110.4199 (3)1.3415 (2)0.29801 (9)0.0502 (5)
C12−0.1377 (4)0.4685 (3)0.40444 (12)0.0388 (6)
H12A−0.02850.49960.38220.058*
H12B−0.24840.40380.37870.058*
H12C−0.12670.40280.43660.058*
C13−0.2580 (3)0.8638 (3)0.54610 (9)0.0262 (4)
H13A−0.37850.78520.55780.031*
H13B−0.27000.96730.53770.031*
O140.0602 (3)0.7270 (2)0.28594 (7)0.0337 (4)
H14A−0.048 (2)0.651 (3)0.2794 (12)0.051*
H14B0.087 (4)0.770 (3)0.2528 (7)0.051*
O15−0.1735 (3)0.9468 (2)0.28392 (8)0.0421 (4)
H15A−0.126 (4)0.955 (4)0.2509 (8)0.063*
H15B−0.263 (3)0.851 (2)0.2816 (14)0.063*
Cu20.35494 (4)0.83718 (3)0.145370 (11)0.02455 (8)
N210.5757 (3)0.8507 (2)0.10232 (8)0.0246 (4)
C220.6423 (3)0.7446 (3)0.08044 (10)0.0273 (5)
N230.7269 (3)0.8023 (2)0.03001 (8)0.0258 (4)
H23A0.78060.75420.00860.031*
C240.7128 (3)0.9526 (3)0.01846 (9)0.0225 (4)
C250.6218 (3)0.9813 (3)0.06424 (9)0.0218 (4)
C260.5580 (3)1.1153 (3)0.08005 (9)0.0225 (4)
H26A0.57081.18790.04740.027*
H26B0.63141.18270.11520.027*
N270.3561 (2)1.0257 (2)0.09200 (7)0.0213 (3)
C280.2817 (3)1.1241 (3)0.12900 (10)0.0267 (5)
H28A0.22821.18360.10360.032*
H28B0.38311.20590.15520.032*
C290.1307 (3)1.0060 (3)0.16603 (10)0.0278 (5)
O300.1386 (2)0.86562 (19)0.17597 (7)0.0293 (3)
O310.0133 (3)1.0514 (2)0.18558 (8)0.0415 (4)
C320.6350 (4)0.5899 (3)0.10759 (12)0.0416 (6)
H32A0.58640.58310.14600.062*
H32B0.75950.59270.11190.062*
H32C0.55440.49370.08230.062*
C330.7703 (3)1.0501 (3)−0.03551 (9)0.0248 (4)
H33A0.89681.0630−0.04270.030*
H33B0.77511.1612−0.02720.030*
O340.3272 (3)0.6462 (2)0.19384 (8)0.0351 (4)
H34A0.222 (2)0.564 (3)0.1904 (12)0.053*
H34B0.364 (4)0.668 (4)0.2303 (6)0.053*
O350.5368 (3)1.0386 (2)0.22603 (8)0.0393 (4)
H35A0.466 (3)1.044 (4)0.2520 (10)0.059*
H35B0.628 (3)1.029 (4)0.2450 (12)0.059*
N410.3385 (3)0.7364 (2)0.43818 (9)0.0332 (4)
O410.2854 (4)0.7699 (3)0.48506 (9)0.0635 (6)
O420.3741 (3)0.6098 (2)0.43267 (9)0.0426 (4)
O430.3583 (3)0.8284 (3)0.39489 (8)0.0487 (5)
N510.1540 (3)0.4932 (2)0.04767 (9)0.0320 (4)
O510.2721 (3)0.5612 (3)0.01204 (9)0.0540 (5)
O520.0845 (3)0.3372 (2)0.05034 (9)0.0449 (5)
O530.1045 (3)0.5808 (2)0.08235 (8)0.0425 (4)
O610.7678 (4)0.4526 (3)0.24970 (14)0.0846 (10)
H61A0.657 (3)0.398 (5)0.259 (2)0.127*
H61B0.819 (4)0.384 (3)0.250 (2)0.127*
O62−0.0134 (3)0.3570 (2)0.17744 (9)0.0484 (5)
H62A−0.015 (5)0.260 (2)0.1804 (14)0.073*
H62B−0.006 (5)0.371 (4)0.1406 (6)0.073*
O630.4948 (3)0.6773 (2)0.30304 (8)0.0404 (4)
H63A0.477 (5)0.5775 (18)0.3072 (14)0.061*
H63B0.448 (5)0.709 (4)0.3310 (11)0.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.03386 (16)0.02060 (13)0.02290 (14)0.00971 (11)0.01201 (11)0.00325 (10)
N10.0294 (10)0.0231 (9)0.0225 (9)0.0105 (8)0.0069 (7)0.0032 (7)
C20.0292 (11)0.0233 (10)0.0246 (11)0.0104 (9)0.0057 (9)0.0047 (8)
N30.0300 (10)0.0217 (9)0.0246 (9)0.0082 (7)0.0082 (7)0.0066 (7)
C40.0232 (10)0.0216 (10)0.0250 (10)0.0069 (8)0.0054 (8)0.0026 (8)
C50.0225 (10)0.0228 (10)0.0233 (10)0.0081 (8)0.0043 (8)0.0021 (8)
C60.0256 (11)0.0249 (10)0.0220 (10)0.0119 (9)0.0060 (8)0.0038 (8)
N70.0294 (10)0.0211 (8)0.0214 (9)0.0103 (7)0.0089 (7)0.0046 (7)
C80.0361 (12)0.0221 (10)0.0256 (11)0.0117 (9)0.0111 (9)0.0064 (8)
C90.0338 (12)0.0280 (11)0.0265 (11)0.0114 (10)0.0102 (9)0.0064 (9)
O100.0363 (9)0.0257 (8)0.0298 (8)0.0116 (7)0.0150 (7)0.0051 (6)
O110.0573 (12)0.0308 (9)0.0619 (13)0.0124 (9)0.0368 (10)0.0140 (9)
C120.0554 (16)0.0271 (12)0.0382 (14)0.0197 (11)0.0143 (12)0.0054 (10)
C130.0254 (11)0.0285 (11)0.0248 (11)0.0101 (9)0.0085 (8)0.0034 (8)
O140.0437 (10)0.0272 (8)0.0259 (8)0.0088 (7)0.0127 (7)0.0000 (7)
O150.0395 (11)0.0469 (11)0.0327 (9)0.0092 (8)0.0114 (8)0.0047 (8)
Cu20.02862 (15)0.02653 (14)0.02214 (14)0.01350 (11)0.00965 (10)0.00828 (10)
N210.0261 (9)0.0271 (9)0.0228 (9)0.0123 (8)0.0054 (7)0.0070 (7)
C220.0281 (11)0.0315 (11)0.0257 (11)0.0148 (9)0.0056 (9)0.0064 (9)
N230.0288 (10)0.0296 (9)0.0242 (9)0.0163 (8)0.0076 (7)0.0040 (7)
C240.0211 (10)0.0252 (10)0.0218 (10)0.0098 (8)0.0032 (8)0.0037 (8)
C250.0205 (10)0.0237 (10)0.0209 (10)0.0086 (8)0.0026 (8)0.0044 (8)
C260.0230 (10)0.0224 (10)0.0220 (10)0.0085 (8)0.0055 (8)0.0035 (8)
N270.0230 (9)0.0220 (8)0.0201 (8)0.0097 (7)0.0067 (7)0.0032 (7)
C280.0314 (12)0.0297 (11)0.0243 (10)0.0166 (9)0.0099 (9)0.0052 (9)
C290.0300 (12)0.0333 (12)0.0226 (11)0.0145 (10)0.0075 (9)0.0046 (9)
O300.0343 (9)0.0302 (8)0.0265 (8)0.0146 (7)0.0128 (6)0.0076 (6)
O310.0460 (11)0.0491 (11)0.0446 (10)0.0310 (9)0.0265 (8)0.0172 (8)
C320.0576 (17)0.0428 (14)0.0415 (14)0.0350 (13)0.0172 (12)0.0187 (12)
C330.0215 (10)0.0290 (11)0.0228 (10)0.0083 (9)0.0061 (8)0.0053 (8)
O340.0404 (10)0.0308 (9)0.0314 (9)0.0109 (7)0.0053 (7)0.0111 (7)
O350.0399 (10)0.0510 (11)0.0328 (9)0.0241 (9)0.0069 (8)0.0005 (8)
N410.0346 (11)0.0308 (10)0.0348 (11)0.0136 (9)0.0039 (9)0.0068 (8)
O410.1023 (19)0.0726 (15)0.0410 (12)0.0576 (14)0.0303 (12)0.0161 (10)
O420.0498 (11)0.0284 (9)0.0530 (11)0.0177 (8)0.0129 (9)0.0093 (8)
O430.0711 (14)0.0503 (11)0.0392 (10)0.0368 (11)0.0161 (9)0.0207 (9)
N510.0358 (11)0.0319 (10)0.0311 (10)0.0174 (9)−0.0023 (8)−0.0005 (8)
O510.0574 (13)0.0541 (12)0.0461 (12)0.0165 (10)0.0171 (10)0.0033 (9)
O520.0558 (12)0.0292 (9)0.0502 (11)0.0183 (8)0.0008 (9)0.0021 (8)
O530.0532 (12)0.0388 (10)0.0416 (10)0.0249 (9)0.0074 (9)−0.0008 (8)
O610.0627 (16)0.0583 (15)0.101 (2)−0.0102 (12)0.0429 (15)−0.0296 (15)
O620.0574 (12)0.0403 (11)0.0497 (12)0.0196 (10)0.0189 (10)0.0102 (9)
O630.0469 (11)0.0366 (10)0.0365 (10)0.0144 (9)0.0103 (8)0.0094 (8)

Geometric parameters (Å, °)

Cu1—O101.9484 (16)C33—N27ii1.514 (3)
Cu1—O141.9533 (16)N41—O411.226 (3)
Cu1—N11.9789 (18)N41—O421.251 (3)
Cu1—N72.0619 (17)N41—O431.260 (3)
Cu1—O152.601 (2)N51—O511.233 (3)
Cu1—O432.607 (2)N51—O521.253 (3)
N1—C21.327 (3)N51—O531.259 (3)
N1—C51.390 (3)N3—H3A0.8600
C2—N31.357 (3)C6—H6A0.9700
C2—C121.480 (3)C6—H6B0.9700
N3—C41.391 (3)C8—H8A0.9700
C4—C51.361 (3)C8—H8B0.9700
C4—C131.494 (3)C12—H12A0.9600
C5—C61.493 (3)C12—H12B0.9600
C6—N71.501 (3)C12—H12C0.9600
N7—C81.477 (3)C13—H13A0.9700
N7—C13i1.519 (3)C13—H13B0.9700
C8—C91.530 (3)O14—H14A0.84 (1)
C9—O111.226 (3)O14—H14B0.85 (1)
C9—O101.282 (3)O15—H15A0.84 (1)
C13—N7i1.519 (3)O15—H15B0.84 (1)
Cu2—O301.9632 (15)N23—H23A0.8600
Cu2—O341.9697 (17)C26—H26A0.9700
Cu2—N211.9903 (18)C26—H26B0.9700
Cu2—N272.0690 (17)C28—H28A0.9700
Cu2—O352.4221 (19)C28—H28B0.9700
Cu2—O532.5994 (19)C32—H32A0.9600
N21—C221.330 (3)C32—H32B0.9600
N21—C251.391 (3)C32—H32C0.9600
C22—N231.355 (3)C33—H33A0.9700
C22—C321.484 (3)C33—H33B0.9700
N23—C241.395 (3)O34—H34A0.84 (1)
C24—C251.359 (3)O34—H34B0.84 (1)
C24—C331.492 (3)O35—H35A0.84 (3)
C25—C261.490 (3)O35—H35B0.84 (3)
C26—N271.492 (3)O61—H61A0.84 (3)
N27—C281.480 (3)O61—H61B0.85 (3)
N27—C33ii1.514 (3)O62—H62A0.84 (1)
C28—C291.527 (3)O62—H62B0.84 (1)
C29—O311.234 (3)O63—H63A0.84 (1)
C29—O301.281 (3)O63—H63B0.84 (3)
O10—Cu1—O1491.21 (7)N27—C28—C29109.37 (17)
O10—Cu1—N1166.48 (7)O31—C29—O30124.2 (2)
O14—Cu1—N1102.13 (7)O31—C29—C28119.3 (2)
O10—Cu1—N782.87 (7)O30—C29—C28116.51 (19)
O14—Cu1—N7170.59 (7)C29—O30—Cu2114.94 (14)
N1—Cu1—N784.17 (7)C24—C33—N27ii115.46 (17)
O10—Cu1—O1591.86 (7)O41—N41—O42120.3 (2)
O14—Cu1—O1586.02 (7)O41—N41—O43120.8 (2)
N1—Cu1—O1591.24 (7)O42—N41—O43118.9 (2)
N7—Cu1—O1586.87 (7)N41—O43—Cu1122.73 (16)
O10—Cu1—O4384.37 (7)O51—N51—O52120.4 (2)
O14—Cu1—O4384.84 (7)O51—N51—O53120.0 (2)
N1—Cu1—O4394.57 (7)O52—N51—O53119.5 (2)
N7—Cu1—O43101.77 (7)N51—O53—Cu2120.63 (15)
O15—Cu1—O43170.03 (6)C2—N3—H3A125.6
C2—N1—C5106.92 (17)C4—N3—H3A125.6
C2—N1—Cu1139.08 (15)C5—C6—H6A110.6
C5—N1—Cu1109.98 (13)N7—C6—H6A110.6
N1—C2—N3109.50 (18)C5—C6—H6B110.6
N1—C2—C12126.2 (2)N7—C6—H6B110.6
N3—C2—C12124.3 (2)H6A—C6—H6B108.8
C2—N3—C4108.79 (17)N7—C8—H8A109.9
C5—C4—N3105.16 (18)C9—C8—H8A109.9
C5—C4—C13128.95 (19)N7—C8—H8B109.9
N3—C4—C13125.51 (19)C9—C8—H8B109.9
C4—C5—N1109.61 (18)H8A—C8—H8B108.3
C4—C5—C6134.29 (19)C2—C12—H12A109.5
N1—C5—C6116.00 (18)C2—C12—H12B109.5
C5—C6—N7105.46 (16)H12A—C12—H12B109.5
C8—N7—C6114.66 (17)C2—C12—H12C109.5
C8—N7—C13i111.73 (17)H12A—C12—H12C109.5
C6—N7—C13i112.48 (16)H12B—C12—H12C109.5
C8—N7—Cu1102.92 (12)C4—C13—H13A108.8
C6—N7—Cu1102.80 (12)N7i—C13—H13A108.8
C13i—N7—Cu1111.46 (13)C4—C13—H13B108.8
N7—C8—C9108.93 (17)N7i—C13—H13B108.8
O11—C9—O10124.0 (2)H13A—C13—H13B107.7
O11—C9—C8120.1 (2)Cu1—O14—H14A115.2 (19)
O10—C9—C8115.84 (19)Cu1—O14—H14B111 (2)
C9—O10—Cu1114.73 (14)H14A—O14—H14B105 (2)
C4—C13—N7i113.84 (18)Cu1—O15—H15A98 (2)
O30—Cu2—O3494.11 (7)Cu1—O15—H15B102 (2)
O30—Cu2—N21166.65 (7)H15A—O15—H15B105 (2)
O34—Cu2—N2199.21 (7)C22—N23—H23A125.6
O30—Cu2—N2782.21 (7)C24—N23—H23A125.6
O34—Cu2—N27174.38 (7)C25—C26—H26A110.6
N21—Cu2—N2784.44 (7)N27—C26—H26A110.6
O30—Cu2—O3584.72 (7)C25—C26—H26B110.6
O34—Cu2—O3592.25 (7)N27—C26—H26B110.6
N21—Cu2—O3595.62 (7)H26A—C26—H26B108.8
N27—Cu2—O3591.64 (7)N27—C28—H28A109.8
O30—Cu2—O5385.36 (6)C29—C28—H28A109.8
O34—Cu2—O5376.31 (7)N27—C28—H28B109.8
N21—Cu2—O5396.84 (7)C29—C28—H28B109.8
N27—Cu2—O5399.08 (6)H28A—C28—H28B108.2
O35—Cu2—O53164.27 (6)C22—C32—H32A109.5
C22—N21—C25106.61 (17)C22—C32—H32B109.5
C22—N21—Cu2137.21 (15)H32A—C32—H32B109.5
C25—N21—Cu2109.28 (13)C22—C32—H32C109.5
N21—C22—N23109.61 (19)H32A—C32—H32C109.5
N21—C22—C32126.3 (2)H32B—C32—H32C109.5
N23—C22—C32124.1 (2)C24—C33—H33A108.4
C22—N23—C24108.84 (18)N27ii—C33—H33A108.4
C25—C24—N23104.89 (18)C24—C33—H33B108.4
C25—C24—C33128.23 (19)N27ii—C33—H33B108.4
N23—C24—C33126.66 (19)H33A—C33—H33B107.5
C24—C25—N21110.02 (18)Cu2—O34—H34A117 (2)
C24—C25—C26134.12 (19)Cu2—O34—H34B117 (2)
N21—C25—C26115.81 (17)H34A—O34—H34B109 (2)
C25—C26—N27105.47 (16)Cu2—O35—H35A110 (2)
C28—N27—C26114.94 (16)Cu2—O35—H35B121 (2)
C28—N27—C33ii111.27 (17)H35A—O35—H35B105 (2)
C26—N27—C33ii112.37 (15)H61A—O61—H61B106 (2)
C28—N27—Cu2104.14 (12)H62A—O62—H62B103 (2)
C26—N27—Cu2103.68 (12)H63A—O63—H63B108 (2)
C33ii—N27—Cu2109.74 (12)
O10—Cu1—N1—C2−126.5 (3)N27—Cu2—N21—C254.30 (14)
O14—Cu1—N1—C244.1 (2)O35—Cu2—N21—C25−86.81 (14)
N7—Cu1—N1—C2−143.0 (2)O53—Cu2—N21—C25102.81 (14)
O15—Cu1—N1—C2130.3 (2)C25—N21—C22—N23−0.5 (2)
O43—Cu1—N1—C2−41.6 (2)Cu2—N21—C22—N23145.56 (18)
O10—Cu1—N1—C526.7 (4)C25—N21—C22—C32176.9 (2)
O14—Cu1—N1—C5−162.71 (14)Cu2—N21—C22—C32−37.1 (4)
N7—Cu1—N1—C510.21 (14)N21—C22—N23—C24−0.5 (3)
O15—Cu1—N1—C5−76.52 (14)C32—C22—N23—C24−178.0 (2)
O43—Cu1—N1—C5111.60 (14)C22—N23—C24—C251.3 (2)
C5—N1—C2—N3−0.7 (2)C22—N23—C24—C33−173.7 (2)
Cu1—N1—C2—N3152.96 (18)N23—C24—C25—N21−1.6 (2)
C5—N1—C2—C12179.5 (2)C33—C24—C25—N21173.3 (2)
Cu1—N1—C2—C12−26.8 (4)N23—C24—C25—C26−179.1 (2)
N1—C2—N3—C4−0.2 (3)C33—C24—C25—C26−4.2 (4)
C12—C2—N3—C4179.6 (2)C22—N21—C25—C241.3 (2)
C2—N3—C4—C51.1 (2)Cu2—N21—C25—C24−154.94 (15)
C2—N3—C4—C13−172.3 (2)C22—N21—C25—C26179.31 (18)
N3—C4—C5—N1−1.5 (2)Cu2—N21—C25—C2623.0 (2)
C13—C4—C5—N1171.5 (2)C24—C25—C26—N27129.3 (2)
N3—C4—C5—C6−177.7 (2)N21—C25—C26—N27−48.0 (2)
C13—C4—C5—C6−4.7 (4)C25—C26—N27—C28158.64 (17)
C2—N1—C5—C41.4 (2)C25—C26—N27—C33ii−72.8 (2)
Cu1—N1—C5—C4−160.57 (15)C25—C26—N27—Cu245.67 (16)
C2—N1—C5—C6178.42 (19)O30—Cu2—N27—C2830.55 (13)
Cu1—N1—C5—C616.4 (2)N21—Cu2—N27—C28−149.39 (14)
C4—C5—C6—N7131.6 (3)O35—Cu2—N27—C28−53.90 (13)
N1—C5—C6—N7−44.5 (2)O53—Cu2—N27—C28114.55 (13)
C5—C6—N7—C8158.05 (17)O30—Cu2—N27—C26151.13 (12)
C5—C6—N7—C13i−72.8 (2)N21—Cu2—N27—C26−28.80 (12)
C5—C6—N7—Cu147.16 (17)O35—Cu2—N27—C2666.69 (12)
O10—Cu1—N7—C831.67 (14)O53—Cu2—N27—C26−124.87 (12)
N1—Cu1—N7—C8−152.16 (14)O30—Cu2—N27—C33ii−88.64 (13)
O15—Cu1—N7—C8−60.59 (13)N21—Cu2—N27—C33ii91.42 (13)
O43—Cu1—N7—C8114.37 (13)O35—Cu2—N27—C33ii−173.09 (12)
O10—Cu1—N7—C6151.08 (13)O53—Cu2—N27—C33ii−4.64 (13)
N1—Cu1—N7—C6−32.75 (13)C26—N27—C28—C29−148.41 (18)
O15—Cu1—N7—C658.82 (12)C33ii—N27—C28—C2982.4 (2)
O43—Cu1—N7—C6−126.22 (12)Cu2—N27—C28—C29−35.70 (19)
O10—Cu1—N7—C13i−88.21 (13)N27—C28—C29—O31−158.3 (2)
N1—Cu1—N7—C13i87.95 (13)N27—C28—C29—O3023.4 (3)
O15—Cu1—N7—C13i179.52 (13)O31—C29—O30—Cu2−174.47 (19)
O43—Cu1—N7—C13i−5.51 (14)C28—C29—O30—Cu23.7 (2)
C6—N7—C8—C9−149.67 (18)O34—Cu2—O30—C29164.11 (16)
C13i—N7—C8—C980.8 (2)N21—Cu2—O30—C29−19.9 (4)
Cu1—N7—C8—C9−38.8 (2)N27—Cu2—O30—C29−20.16 (15)
N7—C8—C9—O11−152.6 (2)O35—Cu2—O30—C2972.23 (16)
N7—C8—C9—O1028.6 (3)O53—Cu2—O30—C29−120.00 (16)
O11—C9—O10—Cu1−179.2 (2)C25—C24—C33—N27ii−101.2 (3)
C8—C9—O10—Cu1−0.5 (3)N23—C24—C33—N27ii72.7 (3)
O14—Cu1—O10—C9154.16 (17)O41—N41—O43—Cu1−56.3 (3)
N1—Cu1—O10—C9−35.0 (4)O42—N41—O43—Cu1123.81 (19)
N7—Cu1—O10—C9−18.51 (16)O10—Cu1—O43—N41167.17 (19)
O15—Cu1—O10—C968.10 (17)O14—Cu1—O43—N41−101.09 (19)
O43—Cu1—O10—C9−121.15 (17)N1—Cu1—O43—N410.70 (19)
C5—C4—C13—N7i−99.9 (3)N7—Cu1—O43—N4185.68 (19)
N3—C4—C13—N7i71.9 (3)O51—N51—O53—Cu2−49.7 (3)
O30—Cu2—N21—C22−141.4 (3)O52—N51—O53—Cu2129.25 (19)
O34—Cu2—N21—C2234.5 (2)O30—Cu2—O53—N51179.93 (17)
N27—Cu2—N21—C22−141.1 (2)O34—Cu2—O53—N51−84.69 (17)
O35—Cu2—N21—C22127.8 (2)N21—Cu2—O53—N5113.17 (18)
O53—Cu2—N21—C22−42.6 (2)N27—Cu2—O53—N5198.60 (17)
O30—Cu2—N21—C254.0 (4)O35—Cu2—O53—N51−129.0 (2)
O34—Cu2—N21—C25179.99 (14)

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···O42iii0.862.002.853 (3)173
N23—H23A···O52iv0.862.072.927 (3)173
O14—H14A···O61v0.84 (1)1.81 (1)2.613 (3)158 (3)
O14—H14B···O300.85 (1)1.94 (1)2.782 (2)178 (3)
O15—H15A···O310.84 (1)1.89 (1)2.701 (2)160 (3)
O15—H15B···O63v0.84 (1)1.98 (2)2.769 (3)155 (3)
O34—H34A···O620.84 (1)1.98 (1)2.819 (3)174 (3)
O34—H34B···O630.84 (1)1.86 (1)2.665 (3)160 (3)
O35—H35A···O100.84 (3)2.02 (3)2.855 (2)174 (3)
O35—H35B···O15vi0.84 (3)2.11 (3)2.938 (3)166 (3)
O61—H61A···O11vii0.84 (3)1.98 (2)2.787 (3)161 (4)
O61—H61B···O62vi0.85 (3)2.22 (4)2.770 (3)123 (4)
O62—H62A···O31vii0.84 (1)1.94 (1)2.777 (3)173 (4)
O62—H62B···O520.84 (1)2.24 (2)3.023 (3)154 (3)
O63—H63A···O11vii0.84 (1)1.93 (1)2.751 (3)167 (3)
O63—H63B···O430.84 (3)2.07 (3)2.898 (3)170 (3)
O63—H63B···O420.84 (3)2.49 (2)3.120 (3)133 (3)

Symmetry codes: (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z; (v) x−1, y, z; (vi) x+1, y, z; (vii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2146).

References

  • Driessen, W. L., Rehorst, D., Reedijk, J., Mutikainen, I. & Turpeinen, U. (2005). Inorg. Chim. Acta, 358, 2167–2173.
  • Gasque, L., Olguín, J. & Bernès, S. (2005). Acta Cryst. E61, m274–m276.
  • Gasque, L., Ugalde-Saldívar, V. M., Membrillo, I., Olguín, J., Mijangos, E., Bernès, S. & González, I. (2008). J. Inorg. Biochem.102, 1227–1235. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Mendoza-Díaz, G., Driessen, W. L., Reedijk, J., Gorter, S., Gasque, L. & Thompson, K. R. (2002). Inorg. Chim. Acta, 339, 51–59.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Sosa, A. M., Ugalde-Saldívar, V. M., González, I. & Gasque, L. (2005). J. Electroanal. Chem.579, 103–111.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography