PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1687.
Published online 2008 August 6. doi:  10.1107/S1600536808024276
PMCID: PMC2960582

3-Methyl­sulfinyl-2-phenyl-1-benzofuran

Abstract

The title compound, C15H12O2S, was prepared by the oxidation of 3-methyl­sulfanyl-2-phenyl-1-benzofuran with 3-chloro­peroxy­benzoic acid. The phenyl ring makes a dihedral angle of 37.65 (8)° with the plane of the benzofuran fragment. The O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran ring system. The crystal structure is stabilized by aromatic π–π inter­actions between the benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.549 (2) Å] and by inter­molecular C—H(...)O inter­actions.

Related literature

For the crystal structures of similar 3-methyl­sulfinyl-2-phenyl-1-benzofuran compounds, see: Choi et al. (2007a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1687-scheme1.jpg

Experimental

Crystal data

  • C15H12O2S
  • M r = 256.32
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1687-efi1.jpg
  • a = 8.0185 (8) Å
  • b = 9.4381 (9) Å
  • c = 9.7749 (9) Å
  • α = 115.574 (2)°
  • β = 109.179 (2)°
  • γ = 94.296 (2)°
  • V = 609.51 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 173 (2) K
  • 0.30 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: none
  • 3185 measured reflections
  • 2120 independent reflections
  • 1878 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.090
  • S = 1.10
  • 2120 reflections
  • 164 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808024276/pk2109sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024276/pk2109Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

This work is related to our previous communications on the synthesis and structure of 3-methylsulfinyl-2-phenyl-1-benzofuran analogues, viz. 5-chloro-3-methylsulfinyl-2-phenyl-1-benzofuran (Choi et al., 2007a) and 5-methyl-3-methylsulfinyl-2-phenyl-1-benzofuran (Choi et al., 2007b). Here we report the crystal structure of 3-methylsulfinyl-2-phenyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.009 (2) Å from the least-squares plane defined by the nine constituent atoms. The phenyl ring (C9—C14) makes a dihedral angle of 37.65 (8)° with the plane of the benzofuran fragment. The molecular packing (Fig. 2) is stabilized by aromatic π—π stacking interactions between the benzene rings from the adjacent molecules. The Cg···Cgii distance is 3.549 (2) Å (Cg is the centroid of C2—C7 benzene ring, symmetry code as in Fig. 2). The crystal structure is further stabilized by C—H···O (Fig. 2) interactions between a methyl H atom and the oxygen of the S=O unit, with a C15—H15C···O2i separation of 2.36 Å (Fig. 2 and Table 1; symmetry code as in Fig. 2).

Experimental

77% 3-Chloroperoxybenzoic acid (359 mg, 1.6 mmol) was added in small portions to a stirred solution of 3-methylsulfanyl-2-phenyl-1-benzofuran (360 mg, 1.5 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 2 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1: 2 v/v) to afford the title compound as a colorless solid [yield 76%, m.p. 408–409 K; Rf = 0.79 (hexane-ethyl acetate, 1:2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in benzene at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 3.13 (s, 3H), 7.33–7.44 (m, 3H), 7.48–7.54 (m, 2H), 7.59 (d, J = 8.03 Hz, 1H), 7.84 (dd, J = 8.08 Hz and J = 1.48 Hz, 2H), 8.22 (d, J = 7.32 Hz, 1H); EI—MS 256 [M+].

Refinement

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms, 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
π—π and C—H···O interactions (dotted lines) in the title compound. Cg denotes ring centroid. [Symmetry code: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y, -z + 1.]

Crystal data

C15H12O2SZ = 2
Mr = 256.32F000 = 268
Triclinic, P1Dx = 1.397 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.0185 (8) ÅCell parameters from 2383 reflections
b = 9.4381 (9) Åθ = 2.5–28.2º
c = 9.7749 (9) ŵ = 0.26 mm1
α = 115.574 (2)ºT = 173 (2) K
β = 109.179 (2)ºBlock, colorless
γ = 94.296 (2)º0.30 × 0.10 × 0.10 mm
V = 609.51 (10) Å3

Data collection

Bruker SMART CCD diffractometer2120 independent reflections
Radiation source: fine-focus sealed tube1878 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.030
Detector resolution: 10.0 pixels mm-1θmax = 25.0º
T = 173(2) Kθmin = 2.5º
[var phi] and ω scansh = −8→9
Absorption correction: nonek = −11→11
3185 measured reflectionsl = −11→5

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.090  w = 1/[σ2(Fo2) + (0.0341P)2 + 0.3746P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2120 reflectionsΔρmax = 0.32 e Å3
164 parametersΔρmin = −0.24 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S0.33893 (6)0.23694 (6)0.35764 (6)0.02368 (16)
O1−0.05250 (18)−0.15771 (15)0.17293 (16)0.0238 (3)
O20.4116 (2)0.33041 (18)0.54205 (18)0.0356 (4)
C10.1412 (3)0.0880 (2)0.2927 (2)0.0210 (4)
C20.0021 (3)0.1096 (2)0.3590 (2)0.0219 (4)
C3−0.0353 (3)0.2390 (3)0.4755 (3)0.0280 (5)
H30.04200.34570.53360.034*
C4−0.1883 (3)0.2063 (3)0.5031 (3)0.0321 (5)
H4−0.21700.29280.58070.039*
C5−0.3018 (3)0.0500 (3)0.4202 (3)0.0326 (5)
H5−0.40600.03290.44250.039*
C6−0.2666 (3)−0.0807 (3)0.3064 (3)0.0291 (5)
H6−0.3429−0.18770.25000.035*
C7−0.1131 (3)−0.0453 (2)0.2802 (2)0.0226 (4)
C80.1044 (2)−0.0725 (2)0.1847 (2)0.0212 (4)
C90.1918 (3)−0.1716 (2)0.0813 (2)0.0221 (4)
C100.1916 (3)−0.3292 (2)0.0565 (3)0.0299 (5)
H100.1393−0.36950.11100.036*
C110.2669 (3)−0.4265 (3)−0.0468 (3)0.0370 (5)
H110.2666−0.5331−0.06240.044*
C120.3428 (3)−0.3693 (3)−0.1276 (3)0.0364 (5)
H120.3931−0.4370−0.19950.044*
C130.3451 (3)−0.2136 (3)−0.1033 (3)0.0315 (5)
H130.3986−0.1738−0.15750.038*
C140.2695 (3)−0.1150 (2)0.0000 (2)0.0255 (4)
H140.2707−0.00830.01540.031*
C150.2300 (3)0.3619 (3)0.2805 (3)0.0352 (5)
H15A0.13340.38960.32030.053*
H15B0.17680.30270.15920.053*
H15C0.32030.46160.32000.053*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S0.0189 (3)0.0221 (3)0.0235 (3)0.00303 (19)0.0068 (2)0.0072 (2)
O10.0233 (7)0.0214 (7)0.0253 (7)0.0042 (5)0.0117 (6)0.0089 (6)
O20.0311 (8)0.0359 (9)0.0232 (8)−0.0025 (7)0.0057 (7)0.0058 (7)
C10.0201 (10)0.0212 (10)0.0202 (10)0.0065 (8)0.0080 (8)0.0088 (8)
C20.0204 (10)0.0264 (10)0.0206 (10)0.0093 (8)0.0080 (8)0.0122 (9)
C30.0305 (11)0.0281 (11)0.0246 (11)0.0125 (9)0.0107 (9)0.0116 (9)
C40.0357 (12)0.0421 (13)0.0277 (11)0.0238 (10)0.0181 (10)0.0185 (10)
C50.0303 (12)0.0506 (14)0.0401 (13)0.0229 (10)0.0236 (10)0.0324 (12)
C60.0256 (11)0.0365 (12)0.0348 (12)0.0106 (9)0.0138 (9)0.0235 (10)
C70.0234 (10)0.0275 (10)0.0213 (10)0.0105 (8)0.0112 (8)0.0132 (9)
C80.0187 (9)0.0235 (10)0.0208 (10)0.0035 (8)0.0067 (8)0.0113 (8)
C90.0198 (9)0.0214 (10)0.0181 (10)0.0034 (8)0.0056 (8)0.0055 (8)
C100.0334 (12)0.0255 (11)0.0309 (12)0.0068 (9)0.0163 (10)0.0113 (9)
C110.0423 (13)0.0239 (11)0.0400 (14)0.0113 (10)0.0199 (11)0.0085 (10)
C120.0317 (12)0.0366 (13)0.0305 (12)0.0101 (10)0.0167 (10)0.0041 (10)
C130.0254 (11)0.0409 (12)0.0227 (11)0.0036 (9)0.0114 (9)0.0104 (9)
C140.0235 (10)0.0277 (11)0.0213 (10)0.0048 (8)0.0070 (8)0.0103 (9)
C150.0292 (11)0.0263 (11)0.0451 (14)0.0039 (9)0.0081 (10)0.0186 (11)

Geometric parameters (Å, °)

S—O21.492 (2)C6—H60.9500
S—C11.769 (2)C8—C91.461 (3)
S—C151.792 (2)C9—C141.396 (3)
O1—C71.384 (2)C9—C101.400 (3)
O1—C81.384 (2)C10—C111.382 (3)
C1—C81.358 (3)C10—H100.9500
C1—C21.449 (3)C11—C121.386 (3)
C2—C71.394 (3)C11—H110.9500
C2—C31.398 (3)C12—C131.382 (3)
C3—C41.381 (3)C12—H120.9500
C3—H30.9500C13—C141.389 (3)
C4—C51.394 (3)C13—H130.9500
C4—H40.9500C14—H140.9500
C5—C61.383 (3)C15—H15A0.9800
C5—H50.9500C15—H15B0.9800
C6—C71.383 (3)C15—H15C0.9800
O2—S—C1106.42 (9)C1—C8—C9134.62 (17)
O2—S—C15107.19 (10)O1—C8—C9114.80 (16)
C1—S—C1598.28 (10)C14—C9—C10118.74 (18)
C7—O1—C8106.40 (14)C14—C9—C8121.25 (17)
C8—C1—C2107.57 (17)C10—C9—C8119.95 (18)
C8—C1—S125.35 (15)C11—C10—C9120.4 (2)
C2—C1—S126.67 (14)C11—C10—H10119.8
C7—C2—C3118.79 (18)C9—C10—H10119.8
C7—C2—C1104.81 (16)C10—C11—C12120.3 (2)
C3—C2—C1136.38 (19)C10—C11—H11119.8
C4—C3—C2117.8 (2)C12—C11—H11119.8
C4—C3—H3121.1C13—C12—C11119.9 (2)
C2—C3—H3121.1C13—C12—H12120.1
C3—C4—C5121.8 (2)C11—C12—H12120.1
C3—C4—H4119.1C12—C13—C14120.2 (2)
C5—C4—H4119.1C12—C13—H13119.9
C6—C5—C4121.76 (19)C14—C13—H13119.9
C6—C5—H5119.1C13—C14—C9120.40 (19)
C4—C5—H5119.1C13—C14—H14119.8
C7—C6—C5115.5 (2)C9—C14—H14119.8
C7—C6—H6122.3S—C15—H15A109.5
C5—C6—H6122.3S—C15—H15B109.5
C6—C7—O1125.00 (18)H15A—C15—H15B109.5
C6—C7—C2124.38 (18)S—C15—H15C109.5
O1—C7—C2110.62 (16)H15A—C15—H15C109.5
C1—C8—O1110.58 (16)H15B—C15—H15C109.5
O2—S—C1—C8−130.84 (18)C1—C2—C7—O10.4 (2)
C15—S—C1—C8118.42 (19)C2—C1—C8—O11.2 (2)
O2—S—C1—C240.85 (19)S—C1—C8—O1174.25 (13)
C15—S—C1—C2−69.89 (19)C2—C1—C8—C9−178.8 (2)
C8—C1—C2—C7−1.0 (2)S—C1—C8—C9−5.8 (3)
S—C1—C2—C7−173.87 (15)C7—O1—C8—C1−1.0 (2)
C8—C1—C2—C3177.6 (2)C7—O1—C8—C9179.06 (16)
S—C1—C2—C34.7 (3)C1—C8—C9—C14−38.8 (3)
C7—C2—C3—C4−1.6 (3)O1—C8—C9—C14141.18 (18)
C1—C2—C3—C4179.9 (2)C1—C8—C9—C10144.1 (2)
C2—C3—C4—C50.8 (3)O1—C8—C9—C10−36.0 (3)
C3—C4—C5—C60.3 (3)C14—C9—C10—C110.0 (3)
C4—C5—C6—C7−0.4 (3)C8—C9—C10—C11177.18 (19)
C5—C6—C7—O1179.56 (18)C9—C10—C11—C12−0.3 (3)
C5—C6—C7—C2−0.5 (3)C10—C11—C12—C130.7 (4)
C8—O1—C7—C6−179.69 (19)C11—C12—C13—C14−0.9 (3)
C8—O1—C7—C20.3 (2)C12—C13—C14—C90.5 (3)
C3—C2—C7—C61.5 (3)C10—C9—C14—C13−0.1 (3)
C1—C2—C7—C6−179.59 (19)C8—C9—C14—C13−177.25 (18)
C3—C2—C7—O1−178.49 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H15C···O2i0.982.343.290 (3)164

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2109).

References

  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o1291–o1292.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o2922.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography