PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1863.
Published online 2008 August 30. doi:  10.1107/S1600536808027360
PMCID: PMC2960578

2-[(3-Bromo­phen­yl)imino­meth­yl]phenol

Abstract

The title compound, C13H10BrNO, was prepared by reaction of 3-bromo­aniline with 2-hydroxy­benzaldehyde at 377 K. The mol­ecular structure and packing are stabilized by an intra­molecular O—H(...)N hydrogen-bond inter­action.

Related literature

For related literature, see: Jian et al. (2006 [triangle]); Rozwadowski et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1863-scheme1.jpg

Experimental

Crystal data

  • C13H10BrNO
  • M r = 276.13
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1863-efi1.jpg
  • a = 3.9700 (8) Å
  • b = 10.540 (2) Å
  • c = 13.200 (3) Å
  • β = 98.00 (3)°
  • V = 546.96 (19) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.73 mm−1
  • T = 293 (2) K
  • 0.12 × 0.10 × 0.07 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 2736 measured reflections
  • 1822 independent reflections
  • 1666 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.082
  • wR(F 2) = 0.229
  • S = 1.13
  • 1822 reflections
  • 145 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 1.43 e Å−3
  • Δρmin = −1.17 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 787 Freidel pairs
  • Flack parameter: 0.1 (4)

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808027360/at2611sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027360/at2611Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The recent growing interest in Schiff bases is also due to their ability to form intramolecular hydrogen bonds by electron coupling between acid–base centers (Rozwadowski et al., 1999). The part of our research is to find Schiff base with higher biological activity, we synthesized the title compound (I) and report its crystal structure here.

In the crystal structure of compound (I) (Fig. 1), the dihedral angle between the benzene rings (C1–C6) and (C7–C12) was 4.6 (2)°. The C═N bond length [1.273 (1) Å] is in agreement with that observed before (Jian et al., 2006). There are intramolecular O—H···N hydrogen-bond interactions to stabilize the crystal structure (Table 1, Fig. 2).

Experimental

A mixture of 2-nitrobenzaldehyde (0.02 mol) and 4-methoxyaniline (0.02 mol) was stirred with ethanol (50 mL) at 377 K for 5 h, affording the title compound (4.33 g, yield 84.5%). Single crystals suitable for X-ray measurements were obtained by recrystallization from acetone at room temperature.

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H and C—H distances of 0.82 and 0.93 Å, respectively, and with Uiso(H) = 1.2 or 1.5Ueq of the parent atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A view of the packing and the intramolecular hydrogen bonding (dashed lines) of (I) in the unitcell.

Crystal data

C13H10BrNOF000 = 276.0
Mr = 276.13Dx = 1.676 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1666 reflections
a = 3.9700 (8) Åθ = 1.6–25.0º
b = 10.540 (2) ŵ = 3.73 mm1
c = 13.200 (3) ÅT = 293 (2) K
β = 98.00 (3)ºBar, yellow
V = 546.96 (19) Å30.12 × 0.10 × 0.07 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer1666 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Monochromator: graphiteθmax = 25.0º
T = 293(2) Kθmin = 1.6º
[var phi] and ω scansh = −4→4
Absorption correction: nonek = −12→12
2736 measured reflectionsl = −12→15
1822 independent reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.082  w = 1/[σ2(Fo2) + (0.1154P)2 + 2.8393P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.229(Δ/σ)max < 0.001
S = 1.13Δρmax = 1.43 e Å3
1822 reflectionsΔρmin = −1.17 e Å3
145 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 787 Freidel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.1 (4)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.4943 (3)0.6144 (2)0.53030 (8)0.0544 (5)
N10.643 (3)0.4449 (9)0.9014 (8)0.041 (2)
C40.538 (4)0.5109 (12)0.7289 (10)0.046 (3)
H4A0.66520.58300.74850.055*
C100.793 (3)0.3864 (10)1.0766 (9)0.036 (3)
C30.402 (4)0.4950 (13)0.6277 (11)0.049 (3)
C110.800 (4)0.2937 (12)1.1480 (10)0.043 (3)
H11A0.71860.21371.12740.052*
C50.487 (3)0.4229 (12)0.8000 (10)0.043 (3)
C81.128 (4)0.5145 (14)1.2004 (12)0.057 (4)
H8A1.24700.58891.21870.068*
C120.918 (4)0.3124 (13)1.2476 (10)0.052 (4)
H12A0.87630.25501.29780.062*
C130.644 (4)0.3630 (11)0.9723 (11)0.041 (3)
H13A0.54310.28460.95610.050*
C90.978 (4)0.4994 (12)1.1041 (10)0.045 (3)
C71.110 (4)0.4238 (15)1.2716 (13)0.060 (4)
H7A1.22540.43481.33730.072*
O10.995 (3)0.5906 (16)1.0355 (8)0.081 (6)
H10.89250.56810.98010.121*
C60.304 (3)0.3157 (12)0.7675 (13)0.050 (4)
H6A0.27980.25300.81570.060*
C20.216 (4)0.3883 (13)0.5982 (12)0.049 (3)
H2A0.12750.37690.52980.059*
C10.157 (5)0.2960 (13)0.6708 (11)0.054 (4)
H1B0.02310.22500.65270.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0649 (8)0.0635 (8)0.0338 (6)−0.0095 (9)0.0028 (5)0.0168 (7)
N10.053 (6)0.034 (5)0.034 (5)−0.002 (4)0.001 (5)−0.001 (4)
C40.060 (8)0.041 (7)0.035 (7)0.005 (6)−0.002 (6)0.001 (5)
C100.042 (7)0.035 (6)0.026 (6)0.004 (5)−0.009 (5)−0.007 (5)
C30.053 (8)0.053 (8)0.040 (7)0.006 (6)0.000 (6)−0.002 (6)
C110.052 (8)0.045 (7)0.035 (7)0.015 (6)0.009 (6)0.002 (6)
C50.039 (7)0.049 (7)0.038 (7)0.013 (6)−0.002 (5)−0.002 (5)
C80.061 (9)0.043 (7)0.060 (9)−0.009 (6)−0.015 (7)−0.003 (6)
C120.073 (10)0.045 (7)0.034 (7)0.001 (7)−0.007 (6)0.013 (6)
C130.060 (8)0.028 (6)0.034 (7)0.004 (5)0.000 (6)0.000 (4)
C90.056 (8)0.039 (6)0.041 (7)0.007 (6)0.003 (6)0.003 (6)
C70.052 (9)0.066 (9)0.060 (9)0.002 (7)−0.001 (7)−0.005 (7)
O10.096 (8)0.077 (16)0.065 (7)−0.043 (8)−0.005 (6)−0.004 (7)
C60.035 (7)0.032 (6)0.079 (10)−0.009 (5)−0.002 (7)0.004 (6)
C20.039 (7)0.059 (9)0.049 (8)0.003 (6)0.006 (6)−0.010 (7)
C10.084 (11)0.043 (8)0.037 (7)−0.011 (7)0.014 (7)−0.013 (6)

Geometric parameters (Å, °)

Br1—C31.872 (15)C8—C71.35 (2)
N1—C131.273 (17)C8—H8A0.9300
N1—C51.414 (16)C12—C71.41 (2)
C4—C51.354 (19)C12—H12A0.9300
C4—C31.379 (19)C13—H13A0.9300
C4—H4A0.9300C9—O11.328 (19)
C10—C111.355 (18)C7—H7A0.9300
C10—C91.420 (18)O1—H10.8200
C10—C131.443 (18)C6—C11.34 (2)
C3—C21.37 (2)C6—H6A0.9300
C11—C121.348 (19)C2—C11.41 (2)
C11—H11A0.9300C2—H2A0.9300
C5—C61.381 (18)C1—H1B0.9300
C8—C91.34 (2)
C13—N1—C5122.7 (11)C7—C12—H12A121.8
C5—C4—C3120.8 (13)N1—C13—C10123.0 (11)
C5—C4—H4A119.6N1—C13—H13A118.5
C3—C4—H4A119.6C10—C13—H13A118.5
C11—C10—C9117.9 (11)O1—C9—C8120.3 (13)
C11—C10—C13120.4 (11)O1—C9—C10120.4 (11)
C9—C10—C13121.1 (11)C8—C9—C10119.3 (12)
C2—C3—C4119.8 (14)C8—C7—C12120.8 (14)
C2—C3—Br1120.4 (11)C8—C7—H7A119.6
C4—C3—Br1119.7 (11)C12—C7—H7A119.6
C12—C11—C10122.9 (13)C9—O1—H1109.5
C12—C11—H11A118.6C1—C6—C5124.1 (13)
C10—C11—H11A118.6C1—C6—H6A117.9
C4—C5—C6117.9 (13)C5—C6—H6A117.9
C4—C5—N1117.2 (12)C3—C2—C1120.5 (14)
C6—C5—N1124.8 (13)C3—C2—H2A119.8
C9—C8—C7121.2 (14)C1—C2—H2A119.8
C9—C8—H8A119.4C6—C1—C2116.7 (13)
C7—C8—H8A119.4C6—C1—H1B121.6
C11—C12—C7116.5 (14)C2—C1—H1B121.6
C11—C12—H12A121.8

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.599 (17)149

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2611).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Jian, F.-F., Zhuang, R.-R., Wang, K.-F., Zhao, P.-S. & Xiao, H.-L. (2006). Acta Cryst. E62, o3198–o3199.
  • Rozwadowski, Z., Majewski, E., Dziembowska, T. & Hansen, P. E. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2809–2817.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography