PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1151.
Published online 2008 August 13. doi:  10.1107/S160053680802494X
PMCID: PMC2960576

4,4′-Diazenediyldipyridinium (4-pyridyldiazen­yl)pyridinium octa­cyanidomolyb­date(V) tetra­hydrate

Abstract

The structure of the title complex, (C10H10N4)(C10H9N4)[Mo(CN)8]·4H2O, consists of 4,4′-diazenediyldipyridinium and (4-pyridyldiazen­yl)pyridinium cations disordered over the same site, an [Mo(CN)8]3− anion and four uncoordinated water mol­ecules. The cations (crystallographic symmetry, 2) and the [Mo(CN)8]3− anion (crystallographic symmetry, 222) are arranged in an alternating fashion, forming a two-dimensional layered structure through hydrogen bonds. Hydrogen bonds, π–π stacking inter­actions (shortest distance = 4.7872 Å) and van der Waals forces between adjacent layers generate a three-dimensional supra­molecular structure.

Related literature

For information on octacyanidometalate-based compounds complexes, see: Chelebaeva et al. (2008 [triangle]); Ikeda et al. (2005 [triangle]); Kosaka et al. (2007 [triangle]); Matoga et al. (2005 [triangle]); Prins et al. (2007 [triangle]); Przychodzeń et al. (2007 [triangle]); Wang et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1151-scheme1.jpg

Experimental

Crystal data

  • (C10H10N4)(C10H9N4)[Mo(CN)8]·4H2O
  • M r = 747.60
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1151-efi9.jpg
  • a = 16.259 (5) Å
  • b = 12.787 (4) Å
  • c = 15.442 (5) Å
  • V = 3210.5 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.47 mm−1
  • T = 291 (2) K
  • 0.28 × 0.26 × 0.24 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.879, T max = 0.895
  • 13328 measured reflections
  • 1851 independent reflections
  • 1540 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.065
  • S = 1.06
  • 1851 reflections
  • 121 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680802494X/br2078sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802494X/br2078Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work is supported by the University Natural Science Foundation of Jiangsu Province (No. 07KJB150030).

supplementary crystallographic information

Comment

Recently, the design and synthesis of multifunctional materials with lanthanide octacyanometalate-based metal assemblies are attracting much more interest (Chelebaeva et al., 2008; Przychodzeń et al., 2007; Ikeda et al., 2005; Kosaka et al., 2007; Matoga et al., 2005; Wang et al., 2006). The combination of the octacyanometalate [M(CN)8]3-/4- (M = Mo,W) building blocks with the lanthanide ions plays an important part in the construction of new supramolecular magnetic materials (Prins et al., 2007). In search of a new lanthanide-containing octacyanometalate-based magnet using [MoV(CN)8]3-and Ce3+as the building blocks, we tired to employ 4,4'-azpy (4,4'-azobispyridine) as the primary ligand for coordination. However, the unexpected octacyanomolybdate(V)-based supramolecular complex [H3(4,4'-azpy)2][Mo(CN)8].4H2O without Ce3+ was obtained instead.

The title complex consists of [H2(4,4'-azpy)]2+ and [H(4,4'-azpy)]+ cations disordered over the same site, [Mo(CN)8]3- anion and crystallized water molecules (Fig. 1). It is worth noting that [H2(4,4'-azpy)]2+ and [H(4,4'-azpy)]+ cations are both disordered over the same site.

In the structure, the eight CN groups are all terminal ones and the average distance of Mo—C is 2.1582 Å. The center Mo atom is coordinated by eight cyano groups in a distorted square antiprism. [H2(4,4'-azpy)]2+ cation, [H(4,4'-azpy)]+ cation (crystallographic symmetry, 2), and [Mo(CN)8]3- anion (crystallographic symmetry, 222) arranged in an alternating fashion to form a two-dimensional layered structure (Fig. 2) through O1—H1A···N2 and N3—H3A···O1 hydrogen-bonds. Then, a three-dimension supramolecular structure (Fig. 3) was formed through O1—H1B···N1 hydrogen-bonds, π-π packing and Van der Waals forces between adjacent layers.

Experimental

Single crystals of the title complex were prepared at room temperature in the dark by slow diffusion of anacetonitrile solution (2 ml) containing both Ce(NO3)3.6H2O (21.71 mg, 0.05 mmol) and 4,4'-azpy (9.21 mg, 0.05 mmol) into an acetonitrile solution (20 ml) of [HN(n—C4H9)3]3[Mo(CN)8].4H2O (46.60 mg, 0.05 mmol). After two weeks, pale yellow crystals were obtained.

Refinement

All non-H atoms were refined anisotropically. The (C,N)H atoms of the 4,4'-azpy molecules were placed in calculated positions with C—H and N—H distances 0.99 Å and 0.92 Å, respectively, with Uiso(H) = 1.2Ueq(C,N). The H atoms of the solvent water molecules were located in a difference Fourier map and refined as riding, with O—H restraints of 0.95 Å, and with Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.
Molecular structure of the title complex showing 30% probability displacement ellipsoids. H atoms are not shown for clarity.
Fig. 2.
View in the ac plane of the hydrogen-bonding interactions in the title complex. [Symmetry codes: A: 0.5 - x, 1.5 - y, 1 - z; B: 1/2 + x, y, 1 - z; C: 1 - x,1.5 - y, z; D: 0.5 - x, -1/2 + y, 1.5 - z; E: 0.5 - x, 1 - y, z; F: x, 1.5 - y, 1.5 - z; G: 1 - ...
Fig. 3.
The hydrogen-bonding interactions between adjacent layers in the title complex. [Symmetry codes: A: 0.5 - x, 1.5 - y, 1 - z; B: 1/2 + x, y, 1 - z; C: 1 - x, 1.5 - y, z; D: 0.5 - x,-1/2 + y, 1.5 - z; E: 0.5 - x, 1 - y, z; F: x, 1.5 - y, 1.5 - z; G: 1 - ...

Crystal data

(C10H10N4)(C10H9N4)[Mo(CN)8]·4H2OF000 = 1524
Mr = 747.60Dx = 1.547 Mg m3
Orthorhombic, CccaMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2b 2bcCell parameters from 13328 reflections
a = 16.259 (5) Åθ = 2.4–27.5º
b = 12.787 (4) ŵ = 0.47 mm1
c = 15.442 (5) ÅT = 291 (2) K
V = 3210.5 (18) Å3Block, pale yellow
Z = 40.28 × 0.26 × 0.24 mm

Data collection

Bruker SMART APEX CCD diffractometer1851 independent reflections
Radiation source: fine-focus sealed tube1540 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.050
T = 291(2) Kθmax = 27.6º
[var phi] and ω scansθmin = 2.4º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −21→21
Tmin = 0.879, Tmax = 0.895k = −16→16
13328 measured reflectionsl = −19→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065  w = 1/[σ2(Fo2) + (0.0235P)2 + 2.9147P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1851 reflectionsΔρmax = 0.52 e Å3
121 parametersΔρmin = −0.28 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.39870 (13)0.84531 (17)0.79366 (15)0.0382 (5)
C20.45460 (14)0.83539 (19)0.63923 (15)0.0427 (5)
C30.41341 (15)0.62509 (19)0.31466 (17)0.0461 (6)
C40.43896 (15)0.63527 (19)0.40018 (17)0.0447 (6)
H40.49480.63850.41320.054*
C50.38109 (14)0.64066 (18)0.46624 (17)0.0450 (6)
H50.39820.64740.52340.054*
C60.27215 (16)0.62570 (19)0.36140 (16)0.0464 (6)
H60.21630.62250.34840.056*
C70.33002 (14)0.62029 (19)0.29530 (16)0.0441 (6)
H70.31290.61350.23810.053*
Mo10.50000.75000.75000.02552 (10)
N10.34570 (12)0.89415 (16)0.81824 (14)0.0468 (5)
N20.43040 (13)0.87856 (16)0.57871 (13)0.0462 (5)
N30.29771 (12)0.63591 (16)0.44687 (13)0.0437 (5)
H3A0.262 (2)0.639 (3)0.488 (2)0.052*0.75
N40.46326 (12)0.62255 (16)0.24043 (15)0.0495 (5)
O10.17847 (11)0.59099 (14)0.56028 (11)0.0457 (4)
H1A0.1323 (19)0.593 (2)0.535 (2)0.069*
H1B0.1865 (18)0.530 (2)0.5803 (19)0.069*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0371 (11)0.0422 (12)0.0353 (12)0.0130 (9)−0.0141 (9)−0.0110 (9)
C20.0442 (13)0.0452 (13)0.0387 (13)0.0103 (10)−0.0093 (10)0.0096 (10)
C30.0477 (13)0.0468 (14)0.0438 (14)0.0125 (10)0.0088 (11)0.0055 (11)
C40.0376 (11)0.0457 (13)0.0510 (15)0.0007 (9)0.0096 (11)0.0065 (11)
C50.0437 (13)0.0476 (13)0.0436 (14)0.0068 (10)0.0092 (11)0.0120 (11)
C60.0499 (13)0.0449 (13)0.0443 (14)0.0183 (10)0.0102 (11)−0.0136 (10)
C70.0453 (13)0.0482 (14)0.0388 (14)0.0139 (10)−0.0010 (11)0.0019 (11)
Mo10.02788 (16)0.02590 (16)0.02278 (16)0.0000.0000.000
N10.0505 (12)0.0483 (11)0.0417 (12)0.0182 (9)−0.0095 (9)−0.0131 (9)
N20.0595 (13)0.0422 (11)0.0371 (11)0.0099 (9)−0.0119 (10)0.0020 (9)
N30.0438 (11)0.0452 (11)0.0420 (12)0.0206 (9)0.0038 (9)−0.0123 (9)
N40.0492 (10)0.0498 (11)0.0496 (13)0.0047 (9)0.0063 (11)−0.0067 (10)
O10.0429 (9)0.0484 (10)0.0459 (11)0.0129 (8)0.0064 (8)0.0155 (8)

Geometric parameters (Å, °)

C1—N11.130 (3)C6—H60.9300
C1—Mo12.157 (2)C7—H70.9300
C2—N21.155 (3)Mo1—C1i2.157 (2)
C2—Mo12.159 (2)Mo1—C1ii2.157 (2)
C3—C71.390 (3)Mo1—C1iii2.157 (2)
C3—C41.391 (4)Mo1—C2iii2.159 (2)
C3—N41.404 (3)Mo1—C2ii2.159 (2)
C4—C51.389 (3)Mo1—C2i2.159 (2)
C4—H40.9300N3—H3A0.86 (4)
C5—N31.390 (3)N4—N4iv1.231 (4)
C5—H50.9300O1—H1A0.85 (3)
C6—N31.390 (3)O1—H1B0.85 (3)
C6—C71.390 (3)
N1—C1—Mo1178.5 (2)C1ii—Mo1—C2iii77.12 (10)
N2—C2—Mo1178.1 (2)C1iii—Mo1—C2iii72.59 (9)
C7—C3—C4120.0 (2)C1i—Mo1—C277.12 (10)
C7—C3—N4112.7 (2)C1—Mo1—C272.59 (9)
C4—C3—N4127.2 (2)C1ii—Mo1—C274.20 (9)
C5—C4—C3120.0 (2)C1iii—Mo1—C2142.59 (9)
C5—C4—H4120.0C2iii—Mo1—C275.23 (13)
C3—C4—H4120.0C1i—Mo1—C2ii142.59 (9)
C4—C5—N3120.0 (2)C1—Mo1—C2ii74.20 (9)
C4—C5—H5120.0C1ii—Mo1—C2ii72.59 (9)
N3—C5—H5120.0C1iii—Mo1—C2ii77.12 (10)
N3—C6—C7120.0 (2)C2iii—Mo1—C2ii140.02 (13)
N3—C6—H6120.0C2—Mo1—C2ii119.25 (14)
C7—C6—H6120.0C1i—Mo1—C2i72.59 (9)
C3—C7—C6120.0 (2)C1—Mo1—C2i77.12 (10)
C3—C7—H7120.0C1ii—Mo1—C2i142.59 (9)
C6—C7—H7120.0C1iii—Mo1—C2i74.20 (9)
C1i—Mo1—C180.44 (12)C2iii—Mo1—C2i119.25 (14)
C1i—Mo1—C1ii143.57 (12)C2—Mo1—C2i140.02 (13)
C1—Mo1—C1ii111.19 (13)C2ii—Mo1—C2i75.23 (13)
C1i—Mo1—C1iii111.19 (13)C5—N3—C6120.0 (2)
C1—Mo1—C1iii143.57 (12)C5—N3—H3A120 (2)
C1ii—Mo1—C1iii80.44 (12)C6—N3—H3A120 (2)
C1i—Mo1—C2iii74.20 (9)N4iv—N4—C3111.4 (3)
C1—Mo1—C2iii142.59 (9)H1A—O1—H1B109 (3)

Symmetry codes: (i) x, −y+3/2, −z+3/2; (ii) −x+1, y, −z+3/2; (iii) −x+1, −y+3/2, z; (iv) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.86 (4)1.86 (4)2.675 (3)157 (3)
O1—H1A···N2v0.85 (3)2.06 (3)2.809 (3)147 (3)
O1—H1B···N1vi0.85 (3)2.40 (3)3.164 (3)150 (3)

Symmetry codes: (v) −x+1/2, −y+3/2, −z+1; (vi) −x+1/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2078).

References

  • Bruker (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 (Version 6.10) and SAINT (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chelebaeva, E., Larionova, J., Guari, Y., Ferreira, R. A. S., Carlos, L. D., Paz, F. A. A., Trifonov, A. & Guérin, C. (2008). Inorg. Chem.47, 775–777. [PubMed]
  • Ikeda, S., Hozumi, T., Hashimoto, K. & Ohkoshi, S. I. (2005). Dalton Trans. pp. 2120–2123. [PubMed]
  • Kosaka, W., Hashimoto, K. & Ohkoshi, S. I. (2007). Bull. Chem. Soc. Jpn, 80, 2350–2356.
  • Matoga, D., Mikuriya, M., Handa, M. & Szklarzewicz, J. (2005). Chem. Lett.34, 1550–1551.
  • Prins, F., Pasca, E., de Jongh, L. J., Kooijman, H., Spek, A. L. & Tanase, S. (2007). Angew. Chem. Int. Ed.46, 6081–6084. [PubMed]
  • Przychodzeń, P., Pełka, R., Lewiński, K., Supel, J., Rams, M., Tomala, K. & Sieklucka, B. (2007). Inorg. Chem.46, 8924–8938. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Z. X., Shen, X. F., Wang, J., Zhang, P., Li, Y. Z., Nfor, E. N., Song, Y., Ohkoshi, S. I., Hashimoto, K. & You, X. Z. (2006). Angew. Chem. Int. Ed.45, 3287–3291. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography