PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1818–o1819.
Published online 2008 August 23. doi:  10.1107/S1600536808026883
PMCID: PMC2960573

4-Meth­oxy-2-[(E)-(phenyl­imino)meth­yl]phenol

Abstract

In the mol­ecule of the title compound, C14H13NO2, the two aromatic rings are oriented at a dihedral angle of 0.78 (20)°; with the exception of two methyl H atoms the mol­ecule is essentially planar. The intra­molecular O—H(...)N hydrogen bond results in the formation of a non-planar, six-membered ring, which adopts a flattened-boat conformation. In the crystal structure, inter­molecular C—H(...)O hydrogen bonds link the mol­ecules to form parallel networks. There is a C—H(...)π contact between the methyl group and the benzene ring. A π–π contact between the benzene and phenyl rings [centroid–centroid distance = 4.681 (5) Å] is also observed.

Related literature

For general background, see: Hökelek et al. (2004 [triangle]); Uçan & Mercimek (2005 [triangle]); Uçan et al. (2005 [triangle]); Garg & Kumar (2003 [triangle]); Mokles & Elzaher (2001 [triangle]); Amirnasr et al. (2002 [triangle]); Bella et al. (2004 [triangle]); Chandra & Kumar (2005 [triangle]); Ray et al. (2003 [triangle]); Yang et al. (2000 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For ring conformation puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1818-scheme1.jpg

Experimental

Crystal data

  • C14H13NO2
  • M r = 227.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1818-efi1.jpg
  • a = 20.935 (2) Å
  • b = 4.7151 (10) Å
  • c = 12.275 (3) Å
  • β = 106.623 (14)°
  • V = 1161.1 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 294 (2) K
  • 0.40 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius TurboCAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.971, T max = 0.990
  • 1653 measured reflections
  • 1560 independent reflections
  • 521 reflections with I > 2σ(I)
  • R int = 0.048
  • θmax = 23.1°
  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.207
  • S = 0.92
  • 1560 reflections
  • 163 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808026883/wn2275sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026883/wn2275Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

supplementary crystallographic information

Comment

Few classes of coordination compounds have been the subject of as much attention as Schiff base complexes formed by the condensation of amines with carbonyl derivatives (Hökelek et al., 2004; Uçan & Mercimek, 2005; Uçan et al., 2005). Schiff bases of diamines and their complexes have a variety of applications including biological, clinical and analytical (Garg & Kumar, 2003; Mokles & Elzaher, 2001; Amirnasr et al., 2002). A great number of Schiff base complexes with metals have provoked wide interest because they possess a diverse spectrum of biological and pharmaceutical activities, such as antitumor and antioxidative activities, as well as the inhibition of lipid peroxidation (Bella et al., 2004; Chandra & Kumar, 2005; Ray et al., 2003; Yang et al., 2000). We report here the crystal structure of the title compound.

In the molecule of the title compound, (Fig. 1) the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. Rings A (C1—C6) and B (C8—C13) are, of course, planar, and they are oriented at a dihedral angle of 0.78 (20)°; with the exception of two methyl H atoms the molecule is essentially planar. It is known that Schiff bases may exhibit thermochromism or photochromism, depending on the planarity or non-planarity of the molecule, respectively. Therefore, one can expect thermochromic properties in the title compound as a result of the planarity of the molecule. The intramolecular O—H···N hydrogen bond (Table 1) results in the formation of a non-planar, six-membered ring C (N1/O1/C7/C8/C13/H1); this adopts a flattened-boat conformation having a total puckering amplitude, QT, of 0.381 (3) Å (Cremer & Pople, 1975).

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules to form a network structure (Fig. 2), in which they are arranged parallel to each other (Fig. 3). A C—H···π contact (Table 1) between the methyl group and B ring is observed. A π—π contact between the A and B rings Cg1···Cg2i [symmetry code: (i) x, y - 1, z, where Cg1 and Cg2 are the centroids of the rings A and B, respectively, further stabilizes the structure, with a centroid-centroid distance of 4.681 (5) Å.

Experimental

The title compound was prepared by the usual condensation method. Aniline (0.931 g, 10 mmol) was dissolved in methanol (10 ml) and added to a solution of 4-methoxysalicylaldehyde (3.042 g, 20 mmol) in methanol (10 ml). The reaction mixture was stirred for 3 h and left overnight at 298 K. The resulting precipitate was filtered and washed with cold ethanol. It was recrystalized from dichloromethane, dried in a vacuum desiccator and the purity was checked by TLC (yield; 3.854 g, 84%, m.p. 341 K).

Refinement

H1 (attached to O1) and H7 (attached to C7) were located in difference syntheses and refined isotropically [O—H = 0.86 (5) Å and Uiso(H) = 0.05 (3) Å2; C—H = 1.03 (5) Å and Uiso(H) = 0.039 (18) Å2]. The remaining H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms. A restraint on the O—H bond was applied.

Figures

Fig. 1.
The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular hydrogen bond is shown as a double dashed line.
Fig. 2.
A part of the crystal structure of the title compound, showing the formation of the network structure. Hydrogen bonds are shown as dashed lines.
Fig. 3.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H13NO2F000 = 480
Mr = 227.26Dx = 1.300 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 20.935 (2) Åθ = 5.2–17.4º
b = 4.7151 (10) ŵ = 0.09 mm1
c = 12.276 (3) ÅT = 294 (2) K
β = 106.623 (14)ºRod-shaped, orange
V = 1161.1 (4) Å30.40 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius TurboCAD-4 diffractometerRint = 0.048
Radiation source: fine-focus sealed tubeθmax = 23.1º
Monochromator: graphiteθmin = 3.3º
T = 294(2) Kh = −22→21
non–profiled ω scansk = 0→5
Absorption correction: ψ scan(North et al., 1968)l = 0→13
Tmin = 0.971, Tmax = 0.9903 standard reflections
1653 measured reflections every 120 min
1560 independent reflections intensity decay: 1%
521 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.207  w = 1/[σ2(Fo2) + (0.0803P)2] where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
1560 reflectionsΔρmax = 0.20 e Å3
163 parametersΔρmin = −0.20 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.7505 (3)0.7726 (12)1.0014 (4)0.0656 (17)
H10.725 (3)0.879 (11)0.951 (4)0.05 (3)*
O20.9196 (2)0.2785 (11)0.7864 (4)0.0649 (16)
N10.7019 (3)1.0588 (12)0.8146 (5)0.0452 (17)
C10.6566 (3)1.2627 (15)0.7496 (6)0.043 (2)
C20.6507 (4)1.3416 (17)0.6390 (7)0.065 (3)
H20.67921.26220.60150.078*
C30.6041 (4)1.5335 (18)0.5837 (7)0.079 (3)
H30.60031.57890.50830.095*
C40.5626 (4)1.6608 (17)0.6377 (8)0.066 (3)
H40.53141.79390.59970.079*
C50.5677 (4)1.5897 (17)0.7486 (8)0.064 (2)
H50.53991.67440.78600.076*
C60.6144 (4)1.3919 (15)0.8039 (6)0.055 (2)
H60.61771.34430.87890.066*
C70.7415 (4)0.9240 (16)0.7710 (7)0.043 (2)
H70.742 (2)0.943 (11)0.688 (5)0.039 (18)*
C80.7886 (3)0.7208 (15)0.8350 (6)0.0397 (19)
C90.8325 (3)0.5868 (15)0.7860 (6)0.049 (2)
H90.83060.62800.71110.059*
C100.8787 (4)0.3956 (16)0.8450 (7)0.048 (2)
C110.8823 (4)0.3314 (16)0.9555 (7)0.057 (2)
H110.91390.20280.99620.068*
C120.8383 (4)0.4607 (17)1.0059 (6)0.056 (2)
H120.84020.41591.08050.067*
C130.7918 (4)0.6544 (17)0.9470 (7)0.049 (2)
C140.9735 (3)0.1055 (17)0.8484 (7)0.077 (3)
H14A0.99780.03750.79820.115*
H14B0.9563−0.05270.88050.115*
H14C1.00260.21500.90820.115*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.085 (4)0.070 (4)0.045 (4)0.028 (4)0.023 (3)0.010 (4)
O20.062 (4)0.072 (4)0.064 (4)0.026 (3)0.025 (3)0.010 (3)
N10.058 (4)0.033 (4)0.043 (4)−0.003 (3)0.012 (4)0.001 (3)
C10.047 (5)0.032 (5)0.046 (5)−0.010 (4)0.005 (4)0.000 (5)
C20.067 (6)0.069 (7)0.055 (6)0.028 (5)0.011 (5)0.004 (5)
C30.089 (7)0.074 (7)0.063 (6)0.034 (6)0.005 (6)0.015 (6)
C40.071 (7)0.038 (6)0.072 (7)0.007 (5)−0.008 (5)0.003 (5)
C50.052 (6)0.048 (6)0.092 (8)0.001 (5)0.023 (5)−0.006 (5)
C60.062 (5)0.043 (5)0.068 (6)0.006 (5)0.031 (5)0.006 (5)
C70.046 (5)0.041 (5)0.040 (5)−0.003 (4)0.008 (4)−0.002 (5)
C80.046 (5)0.033 (5)0.036 (5)0.003 (4)0.007 (4)0.003 (4)
C90.059 (5)0.043 (5)0.040 (5)−0.002 (5)0.008 (4)−0.001 (4)
C100.052 (5)0.037 (5)0.053 (6)0.001 (4)0.014 (4)0.010 (5)
C110.058 (5)0.052 (6)0.058 (6)0.013 (5)0.014 (5)0.022 (5)
C120.068 (6)0.062 (6)0.034 (5)0.000 (5)0.010 (4)0.006 (5)
C130.054 (5)0.048 (6)0.046 (5)−0.002 (4)0.014 (4)−0.005 (5)
C140.064 (6)0.074 (6)0.093 (7)0.034 (5)0.025 (5)0.011 (6)

Geometric parameters (Å, °)

O1—C131.355 (8)C6—H60.9300
O1—H10.86 (5)C7—C81.437 (9)
O2—C101.381 (8)C7—H71.03 (5)
O2—C141.423 (7)C8—C131.393 (8)
N1—C11.424 (8)C9—C81.387 (9)
N1—C71.277 (8)C9—C101.368 (8)
C1—C21.379 (9)C9—H90.9300
C2—C31.362 (9)C11—C101.370 (8)
C2—H20.9300C11—C121.390 (9)
C3—H30.9300C11—H110.9300
C4—C31.372 (10)C12—C131.378 (9)
C4—C51.376 (9)C12—H120.9300
C4—H40.9300C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—C11.390 (9)C14—H14C0.9600
C6—C51.381 (9)
C13—O1—H1104 (5)C9—C8—C13118.3 (7)
C10—O2—C14117.7 (6)C9—C8—C7120.2 (7)
C7—N1—C1120.6 (7)C13—C8—C7121.5 (7)
C2—C1—C6117.7 (7)C10—C9—C8121.8 (7)
C2—C1—N1126.2 (7)C10—C9—H9119.1
C6—C1—N1116.1 (7)C8—C9—H9119.1
C3—C2—C1121.3 (8)C9—C10—C11120.1 (8)
C3—C2—H2119.3C9—C10—O2115.9 (7)
C1—C2—H2119.3C11—C10—O2124.0 (7)
C2—C3—C4120.8 (9)C10—C11—C12119.2 (7)
C2—C3—H3119.6C10—C11—H11120.4
C4—C3—H3119.6C12—C11—H11120.4
C3—C4—C5119.4 (9)C13—C12—C11121.0 (8)
C3—C4—H4120.3C13—C12—H12119.5
C5—C4—H4120.3C11—C12—H12119.5
C4—C5—C6119.7 (8)O1—C13—C12117.9 (8)
C4—C5—H5120.2O1—C13—C8122.5 (7)
C6—C5—H5120.2C12—C13—C8119.6 (8)
C5—C6—C1121.2 (8)O2—C14—H14A109.5
C5—C6—H6119.4O2—C14—H14B109.5
C1—C6—H6119.4H14A—C14—H14B109.5
N1—C7—C8121.9 (8)O2—C14—H14C109.5
N1—C7—H7125 (3)H14A—C14—H14C109.5
C8—C7—H7113 (3)H14B—C14—H14C109.5
C7—N1—C1—C2−1.5 (10)N1—C7—C8—C132.1 (10)
C7—N1—C1—C6178.3 (7)C9—C8—C13—O1−179.3 (7)
C1—N1—C7—C8178.8 (6)C7—C8—C13—O11.1 (11)
C14—O2—C10—C9172.5 (6)C9—C8—C13—C120.4 (10)
C14—O2—C10—C11−7.3 (10)C7—C8—C13—C12−179.2 (7)
N1—C1—C2—C3178.0 (7)C10—C9—C8—C13−0.6 (10)
C6—C1—C2—C3−1.8 (11)C10—C9—C8—C7179.0 (6)
C1—C2—C3—C41.9 (12)C8—C9—C10—C110.1 (11)
C5—C4—C3—C2−1.0 (12)C8—C9—C10—O2−179.7 (6)
C3—C4—C5—C60.1 (12)C12—C11—C10—C90.6 (11)
C5—C6—C1—C20.8 (10)C12—C11—C10—O2−179.6 (7)
C5—C6—C1—N1−179.0 (6)C10—C11—C12—C13−0.8 (11)
C1—C6—C5—C40.0 (11)C11—C12—C13—O1−179.9 (7)
N1—C7—C8—C9−177.5 (7)C11—C12—C13—C80.4 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.86 (5)1.82 (5)2.604 (7)152 (5)
C7—H7···O1i1.03 (5)2.55 (6)3.493 (10)151 (4)
C14—H14A···O2ii0.962.573.500 (6)164
C14—H14B···Cg2iii0.963.274.142 (8)152

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+2, y−1/2, −z+3/2; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2275).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Amirnasr, M., Mahmoudkhani, A. H., Gorji, A., Dehghanpour, S. & Bijanzadeh, H. R. (2002). Polyhedron, 21, 2733–2742.
  • Bella, S. D., Fragala, I., Leonardi, N. & Sortino, S. (2004). Inorg. Chim. Acta, 357, 3865–3870.
  • Chandra, S. & Kumar, U. (2005). Spectrochim. Acta Part A, 61, 219–224. [PubMed]
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Garg, B. S. & Kumar, D. N. (2003). Spectrochim. Acta Part A, 59, 229–334. [PubMed]
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Hökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803–o805. [PubMed]
  • Mokles, M. & Elzaher, A. (2001). J. Chin. Chem. Soc.48, 153–158.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Ray, M. S., Bhattacharya, R., Chaudhuri, S., Righi, L., Bocelli, G., Mukho­padhyay, G. & Ghosh, A. (2003). Polyhedron, 22, 617–624.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Uçan, S. Y. & Mercimek, B. (2005). Synth. React. Inorg. Met.-Org. Nanometal Chem.35, 197–201.
  • Uçan, S. Y., Uçan, M. & Mercimek, B. (2005). Synth. React. Inorg. Met.-Org. Nanometal Chem.35, 417–421.
  • Yang, Z. Y., Yang, R. D., Li, F. S. & Yu, K. B. (2000). Polyhedron, 19, 2599–2604.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography